Sollmann Nico, Cervantes Barbara, Klupp Elisabeth, Weidlich Dominik, Makowski Marcus R, Kirschke Jan S, Hu Houchun H, Karampinos Dimitrios C
Department of Diagnostic and Interventional Neuroradiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany; TUM-Neuroimaging Center, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.
Magn Reson Imaging. 2020 Sep;71:132-139. doi: 10.1016/j.mri.2020.06.009. Epub 2020 Jun 15.
To investigate magnetic resonance neurography (MRN) of the lumbosacral plexus (LSP) with cerebrospinal fluid (CSF) suppression by using submillimeter resolution for three-dimensional (3D) turbo spin echo (TSE) imaging.
Using extended phase graph (EPG) analysis, the signal response of CSF was simulated considering dephasing from coherent motion for frequency-encoding voxel sizes ranging from 0.3 to 1.3 mm and for CSF velocities ranging from 0 to 4 cm/s. In-vivo MRN included 3D TSE data with frequency encoding parallel to the feet/head axis from 15 healthy adults (mean age: 28.5 ± 3.8 years, 5 females; acquisition voxel size: 2 × 2 × 2 mm) and 16 pediatric patients (mean age: 6.7 ± 4.1 years, 7 females; acquisition voxel size: 0.7 × 0.7 × 1.4 mm) acquired at 3 Tesla. Five of the adults were scanned repetitively with changing acquisition voxel sizes (1 × 2 × 2 mm, 0.7 × 2× 2 mm, and 0.5 × 2 × 2 mm). Measurements of the bilateral ganglion of the L5 nerve root, averaged between sides, as well as the CSF in the thecal sac were obtained for all included subjects and compared between adults and pediatric patients and between voxel sizes, using a CSF-to-nerve signal ratio (CSFNR).
According to simulations, the CSF signal is reduced along the echo train for moving spins. Specifically, it can be reduced by over 90% compared to the maximum simulated signal for flow velocities above 2 cm/s, and could be most effectively suppressed by considering a frequency-encoding voxel size of 0.8 mm or less. For in-vivo measurements, mean CSFNR was 1.52 ± 0.22 for adults and 0.10 ± 0.03 for pediatric patients (p < .0001). Differences in CSFNR were significant between measurements using a voxel size of 2 × 2 × 2 mm and measurements in data with reduced voxel sizes (p ≤ .0012), with submillimeter resolution (particularly 0.5 × 2 × 2 mm) providing highest CSF suppression.
Applying frequency-encoding voxel sizes in submillimeter range for 3D TSE imaging with frequency encoding parallel to the feet/head axis may considerably improve MRN of LSP pathology in adults in the future because of favorable CSF suppression.
通过使用亚毫米分辨率进行三维(3D)快速自旋回波(TSE)成像,研究脑脊液(CSF)抑制下的腰骶丛(LSP)磁共振神经成像(MRN)。
使用扩展相位图(EPG)分析,针对频率编码体素大小范围为0.3至1.3毫米以及脑脊液速度范围为0至4厘米/秒的情况,模拟了脑脊液的信号响应,该响应考虑了相干运动引起的去相位。体内MRN包括来自15名健康成年人(平均年龄:28.5±3.8岁,5名女性;采集体素大小:2×2×2毫米)和16名儿科患者(平均年龄:6.7±4.1岁,7名女性;采集体素大小:0.7×0.7×1.4毫米)的3D TSE数据,这些数据是在3特斯拉磁场下采集的。对其中5名成年人以不同的采集体素大小(1×2×2毫米、0.7×2×2毫米和0.5×2×2毫米)进行重复扫描。对所有纳入的受试者测量双侧L5神经根神经节,并计算两侧的平均值,同时测量硬膜囊内的脑脊液,使用脑脊液与神经信号比(CSFNR)在成年人与儿科患者之间以及不同体素大小之间进行比较。
根据模拟,对于移动的自旋,脑脊液信号在回波链中会降低。具体而言,与流速高于2厘米/秒时的最大模拟信号相比,其可降低超过90%,并且通过考虑0.8毫米或更小的频率编码体素大小可最有效地抑制该信号。对于体内测量,成年人的平均CSFNR为1.52±0.22,儿科患者为0.10±0.03(p<.0001)。使用2×2×2毫米体素大小的测量与体素大小减小的数据测量之间的CSFNR差异具有统计学意义(p≤.0012),亚毫米分辨率(特别是0.5×2×2毫米)提供了最高的脑脊液抑制效果。
对于与足/头轴平行进行频率编码的3D TSE成像,应用亚毫米范围内的频率编码体素大小,由于对脑脊液的良好抑制作用,未来可能会显著改善成年人LSP病变的MRN。