Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742.
Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030.
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14712-14720. doi: 10.1073/pnas.2006301117. Epub 2020 Jun 17.
Lithium sulfur batteries (LSBs) are promising next-generation rechargeable batteries due to the high gravimetric energy, low cost, abundance, nontoxicity, and high sustainability of sulfur. However, the dissolution of high-order polysulfide in electrolytes and low Coulombic efficiency of Li anode require excess electrolytes and Li metal, which significantly reduce the energy density of LSBs. Quasi-solid-state LSBs, where sulfur is encapsulated in the micropores of carbon matrix and sealed by solid electrolyte interphase, can operate under lean electrolyte conditions, but a low sulfur loading in carbon matrix (<40 wt %) and low sulfur unitization (<70%) still limit the energy density in a cell level. Here, we significantly increase the sulfur loading in carbon to 60 wt % and sulfur utilization to ∼87% by dispersing sulfur in an oxygen-rich dense carbon host at a molecular level through strong chemical interactions of C-S and O-S. In an all-fluorinated organic lean electrolyte, the C/S cathode experiences a solid-state lithiation/delithiation reaction after the formation of solid electrolyte interphase in the first deep lithiation, completely avoiding the shuttle reaction. The chemically stabilized C/S composite retains a high reversible capacity of 541 mAh⋅g (based on the total weight of the C/S composite) for 200 cycles under lean electrolyte conditions, corresponding to a high energy density of 974 Wh⋅kg The superior electrochemical performance of the chemical bonding-stabilized C/S composite renders it a promising cathode material for high-energy and long-cycle-life LSBs.
锂硫电池(LSB)由于硫的高重量能量、低成本、丰富、无毒和高可持续性,是很有前途的下一代可充电电池。然而,多硫化物在电解质中的高溶解和 Li 阳极的低库仑效率需要过量的电解质和 Li 金属,这大大降低了 LSB 的能量密度。准固态 LSB 中,硫被封装在碳基质的微孔中,并通过固体电解质界面层密封,可以在贫电解质条件下运行,但碳基质中的硫负载量低(<40wt%)和硫利用率低(<70%)仍然限制了电池级的能量密度。在这里,我们通过 C-S 和 O-S 的强化学相互作用,在分子水平上将硫分散在富氧致密碳主体中,从而将碳中的硫负载量提高到 60wt%,硫利用率提高到~87%。在全氟化有机贫电解质中,C/S 正极在第一次深度锂化形成固体电解质界面后经历固态锂化/脱锂反应,完全避免了穿梭反应。化学稳定的 C/S 复合材料在贫电解质条件下循环 200 次后仍保持 541mAh⋅g(基于 C/S 复合材料的总重量)的高可逆容量,对应 974Wh⋅kg 的高能量密度。化学键稳定的 C/S 复合材料的卓越电化学性能使其成为高能量和长循环寿命 LSB 的有前途的正极材料。