Suppr超能文献

用于贫电解液锂硫电池的化学稳定硫正极。

A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries.

机构信息

Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742.

Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030.

出版信息

Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14712-14720. doi: 10.1073/pnas.2006301117. Epub 2020 Jun 17.

Abstract

Lithium sulfur batteries (LSBs) are promising next-generation rechargeable batteries due to the high gravimetric energy, low cost, abundance, nontoxicity, and high sustainability of sulfur. However, the dissolution of high-order polysulfide in electrolytes and low Coulombic efficiency of Li anode require excess electrolytes and Li metal, which significantly reduce the energy density of LSBs. Quasi-solid-state LSBs, where sulfur is encapsulated in the micropores of carbon matrix and sealed by solid electrolyte interphase, can operate under lean electrolyte conditions, but a low sulfur loading in carbon matrix (<40 wt %) and low sulfur unitization (<70%) still limit the energy density in a cell level. Here, we significantly increase the sulfur loading in carbon to 60 wt % and sulfur utilization to ∼87% by dispersing sulfur in an oxygen-rich dense carbon host at a molecular level through strong chemical interactions of C-S and O-S. In an all-fluorinated organic lean electrolyte, the C/S cathode experiences a solid-state lithiation/delithiation reaction after the formation of solid electrolyte interphase in the first deep lithiation, completely avoiding the shuttle reaction. The chemically stabilized C/S composite retains a high reversible capacity of 541 mAh⋅g (based on the total weight of the C/S composite) for 200 cycles under lean electrolyte conditions, corresponding to a high energy density of 974 Wh⋅kg The superior electrochemical performance of the chemical bonding-stabilized C/S composite renders it a promising cathode material for high-energy and long-cycle-life LSBs.

摘要

锂硫电池(LSB)由于硫的高重量能量、低成本、丰富、无毒和高可持续性,是很有前途的下一代可充电电池。然而,多硫化物在电解质中的高溶解和 Li 阳极的低库仑效率需要过量的电解质和 Li 金属,这大大降低了 LSB 的能量密度。准固态 LSB 中,硫被封装在碳基质的微孔中,并通过固体电解质界面层密封,可以在贫电解质条件下运行,但碳基质中的硫负载量低(<40wt%)和硫利用率低(<70%)仍然限制了电池级的能量密度。在这里,我们通过 C-S 和 O-S 的强化学相互作用,在分子水平上将硫分散在富氧致密碳主体中,从而将碳中的硫负载量提高到 60wt%,硫利用率提高到~87%。在全氟化有机贫电解质中,C/S 正极在第一次深度锂化形成固体电解质界面后经历固态锂化/脱锂反应,完全避免了穿梭反应。化学稳定的 C/S 复合材料在贫电解质条件下循环 200 次后仍保持 541mAh⋅g(基于 C/S 复合材料的总重量)的高可逆容量,对应 974Wh⋅kg 的高能量密度。化学键稳定的 C/S 复合材料的卓越电化学性能使其成为高能量和长循环寿命 LSB 的有前途的正极材料。

相似文献

1
A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries.用于贫电解液锂硫电池的化学稳定硫正极。
Proc Natl Acad Sci U S A. 2020 Jun 30;117(26):14712-14720. doi: 10.1073/pnas.2006301117. Epub 2020 Jun 17.
5
Lithium-Sulfur Batteries under Lean Electrolyte Conditions: Challenges and Opportunities.贫电解质条件下的锂硫电池:挑战与机遇
Angew Chem Int Ed Engl. 2020 Jul 27;59(31):12636-12652. doi: 10.1002/anie.201909339. Epub 2020 Mar 17.
10
Constructing Stable Anodic Interphase for Quasi-Solid-State Lithium-Sulfur Batteries.构建用于准固态锂硫电池的稳定阳极界面
ACS Appl Mater Interfaces. 2020 Sep 2;12(35):39335-39341. doi: 10.1021/acsami.0c11761. Epub 2020 Aug 24.

本文引用的文献

1
Unified picture of anionic redox in Li/Na-ion batteries.锂/钠离子电池中阴离子氧化还原的统一图景。
Nat Mater. 2019 May;18(5):496-502. doi: 10.1038/s41563-019-0318-3. Epub 2019 Mar 18.
2
Before Li Ion Batteries.在锂离子电池之前。
Chem Rev. 2018 Dec 12;118(23):11433-11456. doi: 10.1021/acs.chemrev.8b00422. Epub 2018 Nov 30.
7
Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites.基于 PAN-硫复合材料的金属-硫电池正极。
J Am Chem Soc. 2015 Sep 23;137(37):12143-52. doi: 10.1021/jacs.5b08113. Epub 2015 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验