Suppr超能文献

基于机器学习的多频对称差分电阻抗断层成像在脑卒中诊断中的应用。

Multi-frequency symmetry difference electrical impedance tomography with machine learning for human stroke diagnosis.

机构信息

Translational Medical Device Lab, National University of Ireland, Galway, Ireland.

出版信息

Physiol Meas. 2020 Aug 11;41(7):075010. doi: 10.1088/1361-6579/ab9e54.

Abstract

OBJECTIVE

Multi-frequency symmetry difference electrical impedance tomography (MFSD-EIT) can robustly detect and identify unilateral perturbations in symmetric scenes. Here, an investigation is performed to assess if the algorithm can be successfully applied to identify the aetiology of stroke with the aid of machine learning.

METHODS

Anatomically realistic four-layer finite element method models of the head based on stroke patient images are developed and used to generate EIT data over a 5 Hz-100 Hz frequency range with and without bleed and clot lesions present. Reconstruction generates conductivity maps of each head at each frequency. Application of a quantitative metric assessing changes in symmetry across the sagittal plane of the reconstructed image and over the frequency range allows lesion detection and identification. The algorithm is applied to both simulated and human (n = 34 subjects) data. A classification algorithm is applied to the metric value in order to differentiate between normal, haemorrhage and clot values.

MAIN RESULTS

An average accuracy of 85% is achieved when MFSD-EIT with support vector machines (SVM) classification is used to identify and differentiate bleed from clot in human data, with 77% accuracy when differentiating normal from stroke in human data.

CONCLUSION

Applying a classification algorithm to metrics derived from MFSD-EIT images is a novel and promising technique for detection and identification of perturbations in static scenes.

SIGNIFICANCE

The MFSD-EIT algorithm used with machine learning gives promising results of lesion detection and identification in challenging conditions like stroke. The results imply feasible translation to human patients.

摘要

目的

多频对称差分电阻抗断层成像(MFSD-EIT)能够稳健地检测和识别对称场景中的单侧扰动。在这里,我们研究了该算法是否可以借助机器学习成功应用于识别中风的病因。

方法

基于中风患者图像,我们开发了具有解剖学意义的四层有限元头部模型,并用于在 5 Hz-100 Hz 频率范围内生成有无出血和血栓病变的 EIT 数据。重建会生成每个头部在每个频率下的电导率图。应用一种定量指标来评估重建图像矢状面上的对称性变化和频率范围内的变化,从而实现病变检测和识别。该算法应用于模拟和人体(n=34 名受试者)数据。应用分类算法对该指标值进行分类,以区分正常、出血和血栓值。

主要结果

当使用支持向量机(SVM)分类的 MFSD-EIT 来识别和区分人体数据中的出血和血栓时,平均准确率为 85%,当区分人体数据中的正常和中风时,准确率为 77%。

结论

将分类算法应用于从 MFSD-EIT 图像得出的指标是一种新颖而有前途的技术,可以用于检测和识别静态场景中的扰动。

意义

使用机器学习的 MFSD-EIT 算法在中风等具有挑战性的条件下对病变检测和识别给出了有希望的结果。这些结果意味着该算法在人类患者中具有可行的转化应用前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验