Mucientes Marta, McNair Robert, Peasey Adrian, Shao Shouqi, Wengraf Joshua, Lulla Kunal, Robinson Benjamin J, Kolosov Oleg
Physics Department, Lancaster University, Lancaster LA1 4YB, United Kingdom.
Nanotechnology. 2020 Oct 9;31(41):415702. doi: 10.1088/1361-6528/ab9e27. Epub 2020 Jun 18.
Graphene's (GR) remarkable mechanical and electrical properties-such as its Young's modulus, low mass per unit area, natural atomic flatness and electrical conductance-would make it an ideal material for micro and nanoelectromechanical systems (MEMS and NEMS). However, the difficulty of attaching GR to supports, coupled with naturally occurring internal defects in a few layer GR can significantly adversely affect the performance of such devices. Here, we have used a combined contact resonance atomic force microscopy (CR-AFM) and ultrasonic force microscopy (UFM) approach to characterise and map with nanoscale spatial resolution GR membrane properties inaccessible to most conventional scanning probe characterisation techniques. Using a multi-layer GR plate (membrane) suspended over a round hole, we show that this combined approach allows access to the mechanical properties, internal structure and attachment geometry of the membrane providing information about both the supported and suspended regions of the system. We show that UFM allows the precise geometrical position of the supported membrane-substrate contact to be located and provides an indication of the local variation of its quality in the contact areas. At the same time, we show that by mapping the position sensitive frequency and phase response of CR-AFM response, one can reliably quantify the membrane stiffness, and image the defects in the suspended area of the membrane. The phase and amplitude of experimental CR-AFM measurements show excellent agreement with an analytical model accounting for the resonance of the combined CR-AFM probe-membrane system. The combination of UFM and CR-AFM provide a beneficial combination for the investigation of few-layer NEMS systems based on two dimensional materials.
石墨烯(GR)具有卓越的机械和电学性能,如杨氏模量、单位面积质量低、天然原子平整度和电导率等,这使其成为微纳机电系统(MEMS和NEMS)的理想材料。然而,将GR附着到支撑物上存在困难,再加上几层GR中自然存在的内部缺陷,会显著不利地影响此类器件的性能。在这里,我们采用了接触共振原子力显微镜(CR-AFM)和超声力显微镜(UFM)相结合的方法,以纳米级空间分辨率表征和绘制大多数传统扫描探针表征技术无法获取的GR膜特性。使用悬浮在圆孔上方的多层GR板(膜),我们表明这种组合方法能够获取膜的机械性能、内部结构和附着几何形状,提供有关系统支撑区域和悬浮区域的信息。我们表明,UFM能够确定支撑膜与基底接触的精确几何位置,并指示接触区域其质量的局部变化。同时,我们表明,通过绘制CR-AFM响应的位置敏感频率和相位响应,可以可靠地量化膜的刚度,并对膜悬浮区域的缺陷进行成像。实验性CR-AFM测量的相位和幅度与考虑CR-AFM探针-膜组合系统共振的分析模型显示出极好的一致性。UFM和CR-AFM的结合为研究基于二维材料的几层NEMS系统提供了有益的组合。