Ochirkhuyag Altantuya, Sápi András, Szamosvölgyi Ákos, Kozma Gábor, Kukovecz Ákos, Kónya Zoltán
University of Szeged, Interdisciplinary Excellence Centre, Department of Applied and Environmental Chemistry, H-6720, Rerrich Béla tér 1, Szeged, Hungary.
Phys Chem Chem Phys. 2020 Jul 1;22(25):13999-14012. doi: 10.1039/d0cp01855d.
Here, we report on a one-pot mechanochemical ball milling synthesis of manganese oxide nanostructures synthesized at different milling speeds. The as-synthesized pure oxides and metal (Pt and Cu) doped oxides were tested in the hydrogenation of CO2 in the gas phase. Our study demonstrates the successful synthesis of the manganese oxide nanoparticles via mechano-chemical synthesis. We discovered that the milling speed could tune the crystal structure and the oxidation state of the manganese, which plays an essential role in the CO2 hydrogenation evidenced by ex situ XRD and XPS studies. The pure MnOx milled at 600 rpm showed high catalytic activity (∼20 000 nmol g-1 s-1) at 823 K, which can be attributed to the presence of Mn(ii) besides Mn(iii) and Mn(iv) on the surface under the reaction conditions. This study illustrates that the milling method is a cost-effective, simple way for the production of both pure, Pt-doped and Cu-loaded manganese nanocatalysts for heterogeneous catalytic reactions. Thus, we studied the Pt incorporation effect for the catalytic activity of MnOx using different Pt loading methods such as one-pot milling, wet impregnation and size-controlled 5 nm Pt loading via an ultrasonication-assisted method.
在此,我们报道了在不同研磨速度下通过一锅机械化学球磨法合成氧化锰纳米结构。将合成的纯氧化物以及金属(铂和铜)掺杂的氧化物用于气相二氧化碳加氢反应测试。我们的研究表明通过机械化学合成成功制备了氧化锰纳米颗粒。我们发现研磨速度可以调节锰的晶体结构和氧化态,异位X射线衍射(XRD)和X射线光电子能谱(XPS)研究证明这在二氧化碳加氢反应中起着至关重要的作用。在600转每分钟的转速下研磨的纯氧化锰在823K时显示出高催化活性(约20000纳摩尔每克每秒),这可归因于在反应条件下表面除了有三价锰和四价锰之外还存在二价锰。这项研究表明,研磨法是一种经济高效、简单的制备用于多相催化反应的纯的、铂掺杂的和负载铜的锰纳米催化剂的方法。因此,我们使用不同的铂负载方法,如一锅研磨、湿浸渍法以及通过超声辅助法进行尺寸控制的5纳米铂负载,研究了铂掺入对氧化锰催化活性的影响。