Institut des Sciences Analytiques UMR 5280, CRMN FRE 2034, Univ Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 rue de la Doua, 69100, Villeurbanne, France.
CarMeN laboratory, Univ Lyon, INSERM, INRA, INSA, Université Claude Bernard Lyon1, 69121, Oullins, France.
Anal Bioanal Chem. 2020 Sep;412(22):5453-5463. doi: 10.1007/s00216-020-02764-9. Epub 2020 Jun 18.
Cellular metabolomics has become key to elucidate mechanistic aspects in various fields such as cancerology or pharmacology, and is rapidly becoming a standard phenotyping tool accessible to the broad biological community. Acquisition of reliable spectroscopic datasets, such as nuclear magnetic resonance (NMR) spectra, to characterize biological systems depends on the elaboration of robust methods for cellular metabolites extraction. Previous studies have addressed many issues raised by these protocols, however with little pondering on ergonomic and practical aspects of the methods that impact their scalability, reproducibility and hence their suitability to high-throughput studies or their use by non-metabolomics experts. Here, we optimize a fast and ergonomic protocol for extraction of metabolites from adherent mammalian cells for NMR metabolomics studies. The proposed extraction protocol, including cell washing, metabolism quenching and actual extraction of intracellular metabolites, was first optimized on HeLa cells. Efficiency of the protocol, in its globality and for the different individual steps, was assessed by NMR quantification of 27 metabolites from cellular extracts. We show that a single PBS wash provides a seemly compromise between contamination from growth medium and leakage of intracellular metabolites. In HeLa cells, extraction using pure methanol, without cell scraping, recovered a higher amount of intracellular metabolites than the reference methanol/water/chloroform method with cell scraping, with yields varying across metabolite classes. Optimized and reference protocols were further tested on eight cell lines of miscellaneous nature, and inter-operator reproducibility was demonstrated. Our results stress the need for tailored extraction protocols and show that fast protocols minimizing time-consuming steps, without compromising extraction yields, are suitable for high-throughput metabolomics studies. Graphical abstract.
细胞代谢组学已成为阐明癌症学或药理学等各个领域的机制方面的关键,并且正在迅速成为广泛的生物学界可获得的标准表型工具。为了对生物系统进行特征描述,需要获取可靠的光谱数据集,例如核磁共振(NMR)光谱,这依赖于对细胞代谢物提取的稳健方法的精心设计。以前的研究已经解决了这些方案带来的许多问题,但是很少考虑到方法的人体工程学和实际方面,这些方面会影响它们的可扩展性、可重复性,以及它们是否适合高通量研究,或者是否适合非代谢组学专家使用。在这里,我们优化了一种用于 NMR 代谢组学研究的快速且符合人体工程学的贴壁哺乳动物细胞代谢物提取方法。该提取方案包括细胞洗涤、代谢物猝灭和细胞内代谢物的实际提取,首先在 HeLa 细胞上进行了优化。通过对细胞提取物中 27 种代谢物的 NMR 定量分析,评估了该方案的整体效率及其各个步骤的效率。我们表明,单次 PBS 洗涤在生长培养基的污染和细胞内代谢物的泄漏之间提供了一个看似的折衷方案。在 HeLa 细胞中,使用纯甲醇而不刮细胞提取,可以比使用甲醇/水/氯仿方法并刮细胞提取到更高量的细胞内代谢物,不同代谢物类别的产率不同。优化和参考方案进一步在八种不同性质的细胞系上进行了测试,并证明了操作者之间的重现性。我们的结果强调了定制提取方案的必要性,并表明最小化耗时步骤而不影响提取效率的快速方案适用于高通量代谢组学研究。