Suppr超能文献

四种分析方法联合用于探索骨骼肌代谢组学:是更好地覆盖代谢途径,还是一个营销论点?

The combination of four analytical methods to explore skeletal muscle metabolomics: Better coverage of metabolic pathways or a marketing argument?

机构信息

CHRU de Tours, Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; UMR INSERM U930, Université François Rabelais de Tours, France.

Institut MITOVASC, CNRS 6015, INSERM U1083, Université d'Angers, Angers, France.

出版信息

J Pharm Biomed Anal. 2018 Jan 30;148:273-279. doi: 10.1016/j.jpba.2017.10.013. Epub 2017 Oct 18.

Abstract

OBJECTIVES

Metabolomics is an emerging science based on diverse high throughput methods that are rapidly evolving to improve metabolic coverage of biological fluids and tissues. Technical progress has led researchers to combine several analytical methods without reporting the impact on metabolic coverage of such a strategy. The objective of our study was to develop and validate several analytical techniques (mass spectrometry coupled to gas or liquid chromatography and nuclear magnetic resonance) for the metabolomic analysis of small muscle samples and evaluate the impact of combining methods for more exhaustive metabolite covering.

DESIGN AND METHODS

We evaluated the muscle metabolome from the same pool of mouse muscle samples after 2 metabolite extraction protocols. Four analytical methods were used: targeted flow injection analysis coupled with mass spectrometry (FIA-MS/MS), gas chromatography coupled with mass spectrometry (GC-MS), liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), and nuclear magnetic resonance (NMR) analysis. We evaluated the global variability of each compound i.e., analytical (from quality controls) and extraction variability (from muscle extracts). We determined the best extraction method and we reported the common and distinct metabolites identified based on the number and identity of the compounds detected with low analytical variability (variation coefficient<30%) for each method. Finally, we assessed the coverage of muscle metabolic pathways obtained.

RESULTS

Methanol/chloroform/water and water/methanol were the best extraction solvent for muscle metabolome analysis by NMR and MS, respectively. We identified 38 metabolites by nuclear magnetic resonance, 37 by FIA-MS/MS, 18 by GC-MS, and 80 by LC-HRMS. The combination led us to identify a total of 132 metabolites with low variability partitioned into 58 metabolic pathways, such as amino acid, nitrogen, purine, and pyrimidine metabolism, and the citric acid cycle. This combination also showed that the contribution of GC-MS was low when used in combination with other mass spectrometry methods and nuclear magnetic resonance to explore muscle samples.

CONCLUSION

This study reports the validation of several analytical methods, based on nuclear magnetic resonance and several mass spectrometry methods, to explore the muscle metabolome from a small amount of tissue, comparable to that obtained during a clinical trial. The combination of several techniques may be relevant for the exploration of muscle metabolism, with acceptable analytical variability and overlap between methods However, the difficult and time-consuming data pre-processing, processing, and statistical analysis steps do not justify systematically combining analytical methods.

摘要

目的

代谢组学是一门新兴科学,基于多种高通量方法,这些方法正在迅速发展,以提高生物体液和组织的代谢物覆盖度。技术进步使得研究人员能够结合多种分析方法,但并未报告这种策略对代谢物覆盖度的影响。本研究的目的是开发和验证几种分析技术(气相或液相色谱与磁共振联用的质谱分析),用于小肌肉样本的代谢组学分析,并评估联合方法对更全面的代谢物覆盖度的影响。

设计与方法

我们评估了来自同一批小鼠肌肉样本的肌肉代谢组学,这些样本经过了两种代谢物提取方案。使用了四种分析方法:靶向流动注射分析与质谱联用(FIA-MS/MS)、气相色谱与质谱联用(GC-MS)、液相色谱与高分辨率质谱联用(LC-HRMS)和磁共振分析(NMR)。我们评估了每个化合物的全局变异性,即分析(来自质量控制)和提取变异性(来自肌肉提取物)。我们确定了最佳的提取方法,并报告了基于每种方法检测到的化合物数量和身份以及低分析变异性(变异系数<30%)的共同和独特代谢物。最后,我们评估了获得的肌肉代谢途径的覆盖度。

结果

甲醇/氯仿/水和水/甲醇分别是 NMR 和 MS 分析肌肉代谢组学的最佳提取溶剂。通过磁共振我们鉴定了 38 种代谢物,通过 FIA-MS/MS 鉴定了 37 种代谢物,通过 GC-MS 鉴定了 18 种代谢物,通过 LC-HRMS 鉴定了 80 种代谢物。组合分析共鉴定了 132 种具有低变异性的代谢物,这些代谢物被分为 58 条代谢途径,如氨基酸、氮、嘌呤和嘧啶代谢以及柠檬酸循环。这种组合还表明,当与其他质谱方法和磁共振联合用于探索肌肉样本时,GC-MS 的贡献较低。

结论

本研究报告了几种分析方法的验证,这些方法基于磁共振和几种质谱方法,用于从小量组织中探索肌肉代谢组学,类似于临床试验中获得的组织量。几种技术的联合可能与探索肌肉代谢有关,具有可接受的分析变异性和方法间的重叠。然而,困难且耗时的数据预处理、处理和统计分析步骤并不值得系统地联合分析方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验