Analytical and Ecological Chemistry, University of Trier, Trier, Germany.
Analytical/Environmental Unit, Department of Chemistry, University of Ibadan, Ibadan, Nigeria.
Environ Sci Pollut Res Int. 2023 Mar;30(11):31085-31101. doi: 10.1007/s11356-022-24296-8. Epub 2022 Nov 28.
Soils interact in many ways with metal ions thereby modifying their mobility, phase distribution, plant availability, speciation, and so on. The most prominent of such interactions is sorption. In this study, we investigated the sorption of Pb, Cd, and Cu in five natural soils of Nigerian origin. A relatively sparsely used method of modelling soil-metal ion adsorption, i.e. adaptive neuro-fuzzy inference system (ANFIS), was applied comparatively with multiple linear regression (MLR) models. The isotherms were well described by Freundlich and Langmuir equations (R ≥ 0.95) and the kinetics by nonlinear two-stage kinetic model, TSKM (R ≥ 0.81). Based on the values delivered by the Langmuir equation, the maximum adsorption capacities (Q*) were found to be in the ranges 10,000-20,000, 12,500-50,000, and 4929-35,037 µmol kg for Cd, Cu, and Pb, respectively. The study revealed significant correlations between Q* and routinely determined soil parameters such as soil organic carbon (C), cation exchange capacity (CEC), amorphous Fe and Mn oxides, and percentage clay content. These soil parameters, combined with operational variables (i.e. solution/soil pH, initial metal concentration (C), and temperature), were used as input vectors in ANFIS and MLR models to predict the adsorption capacities (Q) of the soil-metal ion systems. A total of 255 different ANFIS and 255 different MLR architectures/models were developed and compared based on three performance metrics: MAE (mean absolute error), RMSE (root mean square errors), and R (coefficient of determination). The best ANFIS returned MAE 0.134, RMSE 0.164, and R 0.76, while the best MLR returned MAE 0.158, RMSE 0.199, and R 0.66, indicating the predictive advantage of ANFIS over MLR. Thus, ANFIS can fairly accurately predict the adsorption capacity and/or distribution coefficient of a soil-metal ion system a priori. Nevertheless, more investigation is required to further confirm the robustness/generalisation of the proposed ANFIS.
土壤通过多种方式与金属离子相互作用,从而改变其迁移性、相分布、植物可用性、形态等。其中最突出的相互作用是吸附。本研究调查了源自尼日利亚的五种天然土壤中 Pb、Cd 和 Cu 的吸附。我们应用了一种相对较少使用的土壤-金属离子吸附建模方法,即自适应神经模糊推理系统 (ANFIS),并将其与多元线性回归 (MLR) 模型进行了比较。等温线很好地用 Freundlich 和 Langmuir 方程(R≥0.95)描述,动力学用非线性两段动力学模型(TSKM)(R≥0.81)描述。基于 Langmuir 方程给出的值,最大吸附容量(Q*)的范围分别为 Cd 的 10,000-20,000、Cu 的 12,500-50,000 和 Pb 的 4929-35,037µmolkg。研究表明,Q*与常规测定的土壤参数(如土壤有机碳(C)、阳离子交换容量(CEC)、无定形铁和锰氧化物以及粘土含量百分比)之间存在显著相关性。这些土壤参数与操作变量(即溶液/土壤 pH、初始金属浓度(C)和温度)一起作为输入向量用于 ANFIS 和 MLR 模型中,以预测土壤-金属离子体系的吸附容量(Q)。总共开发并比较了 255 种不同的 ANFIS 和 255 种不同的 MLR 架构/模型,基于三个性能指标:平均绝对误差(MAE)、均方根误差(RMSE)和 R(决定系数)。最佳的 ANFIS 返回 MAE 0.134、RMSE 0.164 和 R 0.76,而最佳的 MLR 返回 MAE 0.158、RMSE 0.199 和 R 0.66,表明 ANFIS 对 MLR 的预测优势。因此,ANFIS 可以相当准确地预测土壤-金属离子体系的吸附容量和/或分配系数。然而,需要进一步的研究来进一步确认所提出的 ANFIS 的稳健性/泛化能力。