Suppr超能文献

使用 3D 打印和可浇注材料模拟组织。

Simulating Tissues with 3D-Printed and Castable Materials.

机构信息

University of Washington, 1959 NE Pacific St., Seattle, WA, USA.

Seattle Children's Hospital, 4800 Sand Point Way NE, Seattle, WA, USA.

出版信息

J Digit Imaging. 2020 Oct;33(5):1280-1291. doi: 10.1007/s10278-020-00358-6.

Abstract

Manufacturing technologies continue to be developed and utilized in medical prototyping, simulations, and imaging phantom production. For radiologic image-guided simulation and instruction, models should ideally have similar imaging characteristics and physical properties to the tissues they replicate. Due to the proliferation of different printing technologies and materials, there is a diverse and broad range of approaches and materials to consider before embarking on a project. Although many printed materials' biomechanical parameters have been reported, no manufacturer includes medical imaging properties that are essential for realistic phantom production. We hypothesize that there are now ample materials available to create high-fidelity imaging anthropomorphic phantoms using 3D printing and casting of common commercially available materials. A material database of radiological, physical, manufacturing, and economic properties for 29 castable and 68 printable materials was generated from samples fabricated by the authors or obtained from the manufacturer and scanned with CT at multiple tube voltages. This is the largest study assessing multiple different parameters associated with 3D printing to date. These data are being made freely available on GitHub, thus affording medical simulation experts access to a database of relevant imaging characteristics of common printable and castable materials. Full data available at: https://github.com/nmcross/Material-Imaging-Characteristics .

摘要

制造技术继续在医学原型制作、模拟和成像体模生产中得到开发和利用。对于放射影像引导的模拟和指导,模型理想情况下应该具有与它们所复制的组织相似的成像特征和物理特性。由于不同打印技术和材料的扩散,在开始项目之前,有各种各样的方法和材料需要考虑。尽管已经报道了许多打印材料的生物力学参数,但没有制造商包括对于逼真的体模生产至关重要的医学成像特性。我们假设,现在有足够的材料可用于使用 3D 打印和常见商业可用材料的铸造来创建高保真成像拟人体模。从作者制作或从制造商获得的样本中生成了一个包含 29 种可铸造和 68 种可打印材料的放射学、物理、制造和经济特性的材料数据库,并使用多管电压对其进行 CT 扫描。这是迄今为止评估与 3D 打印相关的多个不同参数的最大研究。这些数据正在免费发布在 GitHub 上,从而使医学模拟专家能够访问常见可打印和可铸造材料的相关成像特性数据库。完整数据可在:https://github.com/nmcross/Material-Imaging-Characteristics 获得。

相似文献

1
Simulating Tissues with 3D-Printed and Castable Materials.
J Digit Imaging. 2020 Oct;33(5):1280-1291. doi: 10.1007/s10278-020-00358-6.
2
A radiopaque 3D printed, anthropomorphic phantom for simulation of CT-guided procedures.
Eur Radiol. 2018 Nov;28(11):4818-4823. doi: 10.1007/s00330-018-5481-4. Epub 2018 May 22.
4
3D printed patient-specific thorax phantom with realistic heterogenous bone radiopacity using filament printer technology.
Z Med Phys. 2022 Nov;32(4):438-452. doi: 10.1016/j.zemedi.2022.02.001. Epub 2022 Feb 24.
7
Paper-based 3D printing of anthropomorphic CT phantoms: Feasibility of two construction techniques.
Eur Radiol. 2019 Mar;29(3):1384-1390. doi: 10.1007/s00330-018-5654-1. Epub 2018 Aug 16.
9
10
A Novel 3-Dimensional Printing Fabrication Approach for the Production of Pediatric Airway Models.
Anesth Analg. 2021 Nov 1;133(5):1251-1259. doi: 10.1213/ANE.0000000000005260.

引用本文的文献

2
Hybrid phantom for lung CT: Design and validation.
Med Phys. 2025 Aug;52(8):e17990. doi: 10.1002/mp.17990.
4
3D ophthalmic ultrasonography at the slit lamp using existing ultrasound systems.
PLoS One. 2025 Jan 28;20(1):e0317885. doi: 10.1371/journal.pone.0317885. eCollection 2025.
5
Production of heterogenous bone radiopacity phantom using 3D printing.
Phys Eng Sci Med. 2025 Mar;48(1):155-166. doi: 10.1007/s13246-024-01500-2. Epub 2024 Dec 9.

本文引用的文献

1
Technical Note: Accurate replication of soft and bone tissues with 3D printing.
Med Phys. 2020 Jun;47(5):2206-2211. doi: 10.1002/mp.14100. Epub 2020 Mar 10.
3
Imaging Properties of Additive Manufactured (3D Printed) Materials for Potential Use for Phantom Models.
J Digit Imaging. 2020 Apr;33(2):456-464. doi: 10.1007/s10278-019-00257-5.
4
Three-dimensional printing of surgical guides for mandibular distraction osteogenesis in infancy.
Medicine (Baltimore). 2019 Mar;98(10):e14754. doi: 10.1097/MD.0000000000014754.
5
Three-Dimensional Printing for Procedure Rehearsal/Simulation/Planning in Interventional Radiology.
Tech Vasc Interv Radiol. 2019 Mar;22(1):14-20. doi: 10.1053/j.tvir.2018.10.004. Epub 2018 Nov 2.
6
Development of a 3D printed anthropomorphic lung phantom for image quality assessment in CT.
Phys Med. 2019 Jan;57:47-57. doi: 10.1016/j.ejmp.2018.11.015. Epub 2018 Dec 20.
7
The Lateral C1-C2 Puncture: Indications, Technique, and Potential Complications.
AJR Am J Roentgenol. 2019 Feb;212(2):431-442. doi: 10.2214/AJR.18.19584. Epub 2018 Dec 4.
8
Paper-based 3D printing of anthropomorphic CT phantoms: Feasibility of two construction techniques.
Eur Radiol. 2019 Mar;29(3):1384-1390. doi: 10.1007/s00330-018-5654-1. Epub 2018 Aug 16.
10
Preoperative Use of a 3D Printed Model for Femoroacetabular Impingement Surgery and Its Effect on Planned Osteoplasty.
AJR Am J Roentgenol. 2018 Aug;211(2):W116-W121. doi: 10.2214/AJR.17.19400. Epub 2018 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验