Höllen Daniel, Berneder Iris, Capo Tous Francesca, Stöllner Markus, Philipp Sedlazeck Klaus, Schwarz Therese, Aldrian Alexia, Lehner Markus
Chair of Waste Processing Technology and Waste Management, Montanuniversität Leoben, Franz-Josef-Str. 18, 8700 Leoben, Austria.
Chair of Process Technology and Industrial Environmental Protection, Montanuniversität Leoben, Franz-Josef-Str. 18, 8700 Leoben, Austria.
Waste Manag. 2018 Aug;78:750-762. doi: 10.1016/j.wasman.2018.06.048. Epub 2018 Jun 30.
The purpose of this study was to test the feasibility of a specific mineral carbonation reaction route applied to different types of alkaline industrial residues, i.e. biomass, paper sludge and municipal solid waste incineration bottom ashes and stainless steel slags and dust. This new approach includes the dissolution of industrial residues in hydrochloric acid (HCl), followed by precipitation of iron compounds from the resulting aqueous solutions and the precipitation of calcium carbonates to employ in industrial applications (Carbon Capture, Utilisation and Storage, CCUS). The aim of this work is to apply this stepwise treatment to different types of poorly valorised industrial residues to assess which may be the most promising ones to employ for the process, in terms of total content of specific elements in the obtained products. Our results clearly indicate that the investigated ashes and slags consist of 20-30 wt% CaO which is bound in a broad variety of mineral phases. Reaction of slags and ashes with HCl leads to the formation of Si-rich solid residues and Ca-rich aqueous solutions. Dissolution residues from ash treatment might be used as lightweight concrete aggregate in case of appropriate mechanical properties, whereas dissolution residues from slag treatment might serve as metallurgical Cr concentrates. Resulting aqueous solutions show high concentrations of Ca (>10 g/L), up to 27 g/L of Fe and significant amounts of heavy metals like Pb, Ba, Zn, Cu, Ni. The concentration of dissolved Fe decreases to 2 mg/L by adding NH which leads to the precipitation of amorphous iron phases. Finally, calcium carbonates with a purity of 79-97% are precipitated by injecting CO at pH 9. These carbonates present lower heavy metal contents than the input materials (e.g. 0.3 wt% ZnO compared to 0.9 wt% for EAF-FD).
本研究的目的是测试一种特定的矿物碳酸化反应路线应用于不同类型碱性工业废渣的可行性,这些废渣包括生物质、纸污泥、城市固体垃圾焚烧底灰、不锈钢炉渣和粉尘。这种新方法包括将工业废渣溶解于盐酸(HCl)中,随后从所得水溶液中沉淀出铁化合物,并沉淀出碳酸钙以用于工业应用(碳捕获、利用与封存,CCUS)。这项工作的目的是将这种分步处理方法应用于不同类型的低价值工业废渣,以评估就所得产品中特定元素的总含量而言,哪些废渣可能是该工艺最有前景的应用对象。我们的结果清楚地表明,所研究的炉渣和粉尘含有20 - 30 wt%的CaO,其存在于多种矿物相中。炉渣和粉尘与HCl反应会形成富含硅的固体残渣和富含钙的水溶液。如果具有合适的机械性能,灰处理产生的溶解残渣可用作轻质混凝土骨料,而炉渣处理产生的溶解残渣可作为冶金级铬精矿。所得水溶液显示出高浓度的Ca(>10 g/L)、高达27 g/L的Fe以及大量的重金属,如Pb、Ba、Zn、Cu、Ni。通过添加NH使溶解的Fe浓度降至2 mg/L,这会导致无定形铁相沉淀。最后,通过在pH为9时注入CO₂沉淀出纯度为79 - 97%的碳酸钙。这些碳酸盐的重金属含量低于输入材料(例如,电弧炉粉尘中ZnO含量为含量为0.9 wt%,而沉淀碳酸钙中ZnO含量为0.3 wt%) 。