Dantignana Valeria, Company Anna, Costas Miquel
Institut de Química Computacional i Catálisi (IQCC), Departament de Química, Universitat de Girona C/M. Aurélia Capmany 69, Girona (17003), Spain.
Institut de Química Computacional i Catálisi (IQCC), Departament de Química, Universitat de Girona C/M. Aurélia Capmany 69, Girona (17003), Spain;, Email:
Chimia (Aarau). 2020 Jun 24;74(6):470-477. doi: 10.2533/chimia.2020.470.
Catalytic oxidation of primary C-H bonds of alkanes with a series of iron and manganese catalysts is investigated. Products resulting from oxidation of methylenic sites are observed when hexane () is used as model substrate, while corresponding primary C-H bonds remain unreactive. However, by using 2,2,3,3-tetramethylbutane () as model substrate, which only contains primary alkyl C-H bonds, oxidation takes place catalytically using a combination of hydrogen peroxide, a manganese catalyst and acetic acid as co-catalyst, albeit with modest yields (up to 4.4 TON). Complexes bearing tetradentate aminopyridine ligands provide the best yields, while a related pentadentate ligand provides smaller product yields. The chemoselectivity of the reaction is solvent dependent. Carboxylic acid is observed as major product when the reaction takes place in acetonitrile, because of the facile overoxidation of the first formed alcohol product . Instead the corresponding primary alcohol becomes dominant in reactions performed in 2,2,2-trifluoroethanol (TFE). Polarity reversal of the hydroxyl moiety arising from the strong hydrogen bond donor ability of the latter solvent accounts for the unusual product chemoselectivity of the reaction. The significance of the current results in the context of light alkane oxidation is discussed.
研究了一系列铁和锰催化剂对烷烃一级C-H键的催化氧化反应。当使用己烷()作为模型底物时,观察到亚甲基位点氧化产生的产物,而相应的一级C-H键仍未发生反应。然而,使用仅含有一级烷基C-H键的2,2,3,3-四甲基丁烷()作为模型底物时,在过氧化氢、锰催化剂和乙酸作为共催化剂的组合作用下发生催化氧化反应,尽管产率适中(高达4.4 TON)。带有四齿氨基吡啶配体的配合物产率最高,而相关的五齿配体产率较低。反应的化学选择性取决于溶剂。当反应在乙腈中进行时,羧酸被观察为主产物,这是因为最初形成的醇产物容易过度氧化。相反,在2,2,2-三氟乙醇(TFE)中进行的反应中,相应的一级醇占主导地位。后一种溶剂强大的氢键供体能力导致羟基部分的极性反转,这解释了反应异常的产物化学选择性。讨论了当前结果在轻质烷烃氧化背景下的意义。