Suppr超能文献

基于个体化预测模型的膝骨关节炎患者教育和运动疗法后膝关节疼痛、生活质量和行走速度变化的研究。

Individualized predictions of changes in knee pain, quality of life and walking speed following patient education and exercise therapy in patients with knee osteoarthritis - a prognostic model study.

机构信息

Research Unit for Musculoskeletal Function and Physiotherapy, Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, 5230, Odense, Denmark.

Big Data in BioMedicine Group, Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, 85354, Freising, Germany.

出版信息

Osteoarthritis Cartilage. 2020 Sep;28(9):1191-1201. doi: 10.1016/j.joca.2020.05.014. Epub 2020 Jun 17.

Abstract

OBJECTIVE

To facilitate shared decision-making for patients with knee osteoarthritis (OA), we aimed at building clinically applicable models to predict the individual change in pain intensity (VAS scale 0-100), knee-related quality of life (QoL) (KOOS QoL score 0-100) and walking speed (m/sec) immediately following two educational and 12 supervised exercise therapy sessions.

METHODS

We used data from patients with knee OA from the 'Good Life with osteoArthritis in Denmark' (GLA:D®) registry (n = 6,767). From 51 patient characteristics, we selected the best performing variables to predict the outcomes via random forest regression. We evaluated model performance via R. Lastly, we validated and compared our models with the average improvements via the mean differences in an independent validation data set from the GLA:D® registry (n = 2,896) collected 1 year later than the data used to build the models.

RESULTS

Validating our models including the best performing variables yielded Rs of 0.34 for pain intensity, 0.18 for knee-related QoL, and 0.07 for walking speed. The absolute mean differences between model predictions and the true outcomes were 14.65 mm, 10.32 points, and 0.14 m/s, respectively, and similar to the absolute mean differences of 17.64, 11.28 and 0.14 observed when we subtracted the average improvements from the true outcomes.

CONCLUSION

Despite including 51 potential predictors, we were unable to predict changes in individuals' pain intensity, knee-related QoL and walking speed with clinically relevant greater precision than the respective group average outcomes. Therefore, average prediction values can be used to inform patients about expected outcomes.

摘要

目的

为了促进膝骨关节炎(OA)患者的共同决策,我们旨在建立临床适用的模型,以预测疼痛强度(VAS 量表 0-100)、膝关节相关生活质量(KOOS QoL 评分 0-100)和步行速度(m/sec)在接受两次教育和 12 次监督运动治疗后的个体变化。

方法

我们使用了来自丹麦“骨关节炎生活质量”(GLA:D®)登记处(n=6767)的膝骨关节炎患者的数据。我们从 51 个患者特征中选择表现最佳的变量,通过随机森林回归预测结果。我们通过 R 评估模型性能。最后,我们在 GLA:D®登记处(n=2896)的独立验证数据集上验证并比较了我们的模型与平均改进,该数据集比用于构建模型的数据晚 1 年收集。

结果

验证包括表现最佳的变量的模型,得到疼痛强度的 R²为 0.34,膝关节相关生活质量的 R²为 0.18,步行速度的 R²为 0.07。模型预测值与真实结果之间的绝对平均差异分别为 14.65mm、10.32 分和 0.14m/s,与从真实结果中减去平均改进后观察到的 17.64、11.28 和 0.14 的绝对平均差异相似。

结论

尽管纳入了 51 个潜在预测因素,但我们无法以比各自群体平均结果更相关的精度预测个体疼痛强度、膝关节相关生活质量和步行速度的变化。因此,可以使用平均预测值来告知患者预期的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验