Suppr超能文献

针对参与监督性运动与教育的骨关节炎患者膝关节疼痛变化的个性化预测:预后模型研究

Personalized Predictions for Changes in Knee Pain Among Patients With Osteoarthritis Participating in Supervised Exercise and Education: Prognostic Model Study.

作者信息

Rafiei Mahdie, Das Supratim, Bakhtiari Mohammad, Roos Ewa Maria, Skou Søren T, Grønne Dorte T, Baumbach Jan, Baumbach Linda

机构信息

Faculty of Mathematics, Informatics and Natural Sciences, Institute for Computational Systems Biology, University of Hamburg, Albert-Einstein-Ring 8-10, Hamburg, 22761, Germany, 49 40428387370.

Department of Health Economics and Health Services Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.

出版信息

JMIR Rehabil Assist Technol. 2025 Mar 21;12:e60162. doi: 10.2196/60162.

Abstract

BACKGROUND

Knee osteoarthritis (OA) is a common chronic condition that impairs mobility and diminishes quality of life. Despite the proven benefits of exercise therapy and patient education in managing OA pain and functional limitations, these strategies are often underused. To motivate and enhance patient engagement, personalized outcome prediction models can be used. However, the accuracy of existing models in predicting changes in knee pain outcomes remains insufficiently examined.

OBJECTIVE

This study aims to validate existing models and introduce a concise personalized model predicting changes in knee pain from before to after participating in a supervised patient education and exercise therapy program (GLA:D) among patients with knee OA.

METHODS

Our prediction models leverage self-reported patient information and functional measures. To refine the number of variables, we evaluated the variable importance and applied clinical reasoning. We trained random forest regression models and compared the rate of true predictions of our models with those using average values. In supplementary analyses, we additionally considered recently added variables to the GLA:D registry.

RESULTS

We evaluated the performance of a full, continuous, and concise model including all 34 variables, all 11 continuous variables, and the 6 most predictive variables, respectively. All three models performed similarly and were comparable to the existing model, with R2 values of 0.31-0.32 and root-mean-squared errors of 18.65-18.85-despite our increased sample size. Allowing a deviation of 15 (visual analog scale) points from the true change in pain, our concise model correctly estimated the change in pain in 58% of cases, while using average values that resulted in 51% accuracy. Our supplementary analysis led to similar outcomes.

CONCLUSIONS

Our concise personalized prediction model provides more often accurate predictions for changes in knee pain after the GLA:D program than using average pain improvement values. Neither the increase in sample size nor the inclusion of additional variables improved previous models. Based on current knowledge and available data, no better predictions are possible. Guidance is needed on when a model's performance is good enough for clinical practice use.

摘要

背景

膝关节骨关节炎(OA)是一种常见的慢性疾病,会损害关节活动能力并降低生活质量。尽管运动疗法和患者教育在管理OA疼痛和功能受限方面已被证明具有益处,但这些策略的使用往往不足。为了激发并提高患者的参与度,可以使用个性化的结果预测模型。然而,现有模型在预测膝关节疼痛结果变化方面的准确性仍未得到充分检验。

目的

本研究旨在验证现有模型,并引入一个简洁的个性化模型,用于预测膝关节OA患者在参加监督下的患者教育和运动疗法项目(GLA:D)前后膝关节疼痛的变化。

方法

我们的预测模型利用患者自我报告的信息和功能指标。为了精简变量数量,我们评估了变量的重要性并应用了临床推理。我们训练了随机森林回归模型,并将我们模型的真实预测率与使用平均值的模型进行比较。在补充分析中,我们还考虑了最近添加到GLA:D登记处的变量。

结果

我们分别评估了包含所有34个变量的完整模型、所有11个连续变量的连续模型以及6个最具预测性变量的简洁模型的性能。尽管我们增加了样本量,但这三个模型的表现相似,与现有模型相当,R²值为0.31 - 0.32,均方根误差为18.65 - 18.85。允许疼痛真实变化有15(视觉模拟量表)分的偏差,我们的简洁模型在58%的病例中正确估计了疼痛变化,而使用平均值时准确率为51%。我们的补充分析得出了类似的结果。

结论

与使用平均疼痛改善值相比,我们的简洁个性化预测模型更常能准确预测GLA:D项目后膝关节疼痛的变化。样本量的增加和额外变量的纳入均未改进先前的模型。基于目前的知识和可用数据,无法做出更好的预测。需要就模型性能在何种程度上足以用于临床实践提供指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/275f/11951821/b46d77b7301c/rehab-v12-e60162-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验