Slimen Itaf Ben, Boubchir Larbi, Mbarki Zouhair, Seddik Hassene
Centre de Recherche et de Production Research Lab., Ecole Nationale Supérieure des Ingénieurs de Tunis, University of Tunis, Tunis 1008, Tunisia.
Laboratoire d'Informatique Avancée de Saint-Denis Research Lab., University of Paris 8, Saint-Denis, Cedex 93526, France.
J Biomed Res. 2020 Apr 24;34(3):151-161. doi: 10.7555/JBR.34.20190026.
The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography (EEG) is an oversensitive operation and prone to errors, which has motivated the researchers to develop effective automated seizure detection methods. This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases. The proposed method consists of three steps: (i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis (MSPCA), (ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition (EMD), discrete wavelet transform (DWT), and dual-tree complex wavelet transform (DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals, and (iii) allocate the feature vector to the relevant class ( , seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine (SVM), -nearest neighbor ( -NN), and linear discriminant analysis (LDA). The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process. The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods.
脑电图(EEG)中癫痫发作等常见神经系统疾病的视觉分析是一项过于敏感的操作且容易出错,这促使研究人员开发有效的自动癫痫检测方法。本文提出了一种强大的自动癫痫检测方法,该方法可以对这些疾病进行准确诊断。所提出的方法包括三个步骤:(i)使用Savitzky-Golay滤波器和多尺度主成分分析(MSPCA)从EEG数据中去除伪迹;(ii)使用基于经验模态分解(EMD)、离散小波变换(DWT)和双树复小波变换(DTCWT)的信号分解表示从EEG信号中提取特征,以克服EEG信号的非线性和非平稳性;(iii)使用支持向量机(SVM)、k近邻(k-NN)和线性判别分析(LDA)等机器学习技术将特征向量分配到相关类别(即癫痫发作类别“发作期”或无癫痫发作类别“发作间期”)。实验结果基于从CHB-MIT数据库生成的两个有重叠和无重叠过程的EEG数据集。获得的结果表明了所提出方法的有效性,该方法能够实现高达100%的更高分类准确率,并且也优于类似的现有先进方法。