Kevric Jasmin, Subasi Abdulhamit
Department of Electrical and Electronics Engineering, International Burch University, Sarajevo, 71000, Bosnia and Herzegovina,
J Med Syst. 2014 Oct;38(10):131. doi: 10.1007/s10916-014-0131-0. Epub 2014 Aug 30.
In this paper we describe the effect of Multiscale Principal Component Analysis (MSPCA) de-noising method in terms of epileptic seizure detection. In addition, we developed a patient-independent seizure detection algorithm using Freiburg EEG database. Each patient contains datasets called "ictal" and "interictal". Window length of 16 s was applied to extract EEG segments from datasets of each patient. Furthermore, Power Spectral Density (PSD) of each EEG segment was estimated using different spectral analysis methods. Afterwards, these values were fed as input to different machine learning methods that were responsible for seizure detection. We also applied MSPCA de-noising method to EEG segments prior to PSD estimation to determine if MSPCA can further enhance the classifiers' performance. The MSPCA drastically improved both the sensitivity and the specificity, increasing the overall accuracy of all three classifiers up to 20%. The best overall detection accuracy (99.59%) was achieved when Eigenvector analysis was used for frequency estimation, and C4.5 as a classifier. The experiment results show that MSPCA is an effective de-noising method for improving the classification performance in epileptic seizure detection.
在本文中,我们描述了多尺度主成分分析(MSPCA)去噪方法在癫痫发作检测方面的效果。此外,我们使用弗莱堡脑电图数据库开发了一种与患者无关的癫痫发作检测算法。每个患者包含名为“发作期”和“发作间期”的数据集。应用16秒的窗口长度从每个患者的数据集中提取脑电图片段。此外,使用不同的频谱分析方法估计每个脑电图片段的功率谱密度(PSD)。之后,将这些值作为输入提供给负责癫痫发作检测的不同机器学习方法。我们还在PSD估计之前将MSPCA去噪方法应用于脑电图片段,以确定MSPCA是否可以进一步提高分类器的性能。MSPCA显著提高了灵敏度和特异性,将所有三个分类器的总体准确率提高了20%。当使用特征向量分析进行频率估计并使用C4.5作为分类器时,实现了最佳的总体检测准确率(99.59%)。实验结果表明,MSPCA是一种有效的去噪方法,可提高癫痫发作检测中的分类性能。