Discipline of Electrical Engineering, Indian Institute of Technology Indore, Indore 452017, India.
Comput Methods Programs Biomed. 2014 Feb;113(2):494-502. doi: 10.1016/j.cmpb.2013.11.014. Epub 2013 Dec 7.
Epilepsy is a neurological disorder which is characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is a commonly used signal for detection of epileptic seizures. This paper presents a new method for classification of ictal and seizure-free EEG signals. The proposed method is based on the empirical mode decomposition (EMD) and the second-order difference plot (SODP). The EMD method decomposes an EEG signal into a set of symmetric and band-limited signals termed as intrinsic mode functions (IMFs). The SODP of IMFs provides elliptical structure. The 95% confidence ellipse area measured from the SODP of IMFs has been used as a feature in order to discriminate seizure-free EEG signals from the epileptic seizure EEG signals. The feature space obtained from the ellipse area parameters of two IMFs has been used for classification of ictal and seizure-free EEG signals using the artificial neural network (ANN) classifier. It has been shown that the feature space formed using ellipse area parameters of first and second IMFs has given good classification performance. Experimental results on EEG database available by the University of Bonn, Germany, are included to illustrate the effectiveness of the proposed method.
癫痫是一种以大脑瞬时和意外电干扰为特征的神经紊乱。脑电图(EEG)是检测癫痫发作的常用信号。本文提出了一种新的癫痫发作和无癫痫发作 EEG 信号分类方法。该方法基于经验模态分解(EMD)和二阶差分图(SODP)。EMD 方法将 EEG 信号分解为一组对称且带限的信号,称为固有模态函数(IMF)。IMF 的 SODP 提供了椭圆形结构。从 IMF 的 SODP 测量的 95%置信椭圆面积已被用作特征,以便将无癫痫发作 EEG 信号与癫痫发作 EEG 信号区分开来。使用人工神经网络(ANN)分类器,使用两个 IMF 的椭圆面积参数获得的特征空间用于对癫痫发作和无癫痫发作 EEG 信号进行分类。已经表明,使用第一和第二 IMF 的椭圆面积参数形成的特征空间具有良好的分类性能。使用德国波恩大学提供的 EEG 数据库进行的实验结果证明了该方法的有效性。