Department of Medicine Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
Vanderbilt Center for Arrhythmia Research and Therapeutics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America.
PLoS Genet. 2020 Jun 22;16(6):e1008862. doi: 10.1371/journal.pgen.1008862. eCollection 2020 Jun.
A major challenge emerging in genomic medicine is how to assess best disease risk from rare or novel variants found in disease-related genes. The expanding volume of data generated by very large phenotyping efforts coupled to DNA sequence data presents an opportunity to reinterpret genetic liability of disease risk. Here we propose a framework to estimate the probability of disease given the presence of a genetic variant conditioned on features of that variant. We refer to this as the penetrance, the fraction of all variant heterozygotes that will present with disease. We demonstrate this methodology using a well-established disease-gene pair, the cardiac sodium channel gene SCN5A and the heart arrhythmia Brugada syndrome. From a review of 756 publications, we developed a pattern mixture algorithm, based on a Bayesian Beta-Binomial model, to generate SCN5A penetrance probabilities for the Brugada syndrome conditioned on variant-specific attributes. These probabilities are determined from variant-specific features (e.g. function, structural context, and sequence conservation) and from observations of affected and unaffected heterozygotes. Variant functional perturbation and structural context prove most predictive of Brugada syndrome penetrance.
在基因组医学中出现的一个主要挑战是如何评估在疾病相关基因中发现的罕见或新型变异对疾病风险的最佳影响。大量表型研究产生的不断增加的数据量与 DNA 序列数据相结合,为重新解释疾病风险的遗传易感性提供了机会。在这里,我们提出了一种框架,用于根据特定变异的特征,在存在遗传变异的情况下估计疾病的概率。我们将其称为外显率,即所有杂合变异体中出现疾病的比例。我们使用一个经过充分验证的疾病基因对——心脏钠离子通道基因 SCN5A 和心脏心律失常 Brugada 综合征来证明这种方法。通过对 756 篇文献的综述,我们开发了一种基于贝叶斯 Beta-Binomial 模型的模式混合算法,为 Brugada 综合征条件下 SCN5A 的外显率生成概率,具体取决于特定变异的属性。这些概率是根据特定于变异的特征(例如功能、结构背景和序列保守性)以及受影响和未受影响的杂合子的观察结果确定的。变异的功能扰动和结构背景证明对 Brugada 综合征外显率的预测最具预测性。