Suppr超能文献

破骨细胞中的核受体。

Nuclear receptors in osteoclasts.

机构信息

Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA.

Arthritis and Tissue Degeneration Program, David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA.

出版信息

Curr Opin Pharmacol. 2020 Aug;53:8-17. doi: 10.1016/j.coph.2020.03.002. Epub 2020 Jun 20.

Abstract

Osteoclasts are bone-resorbing cells that play an essential role in the remodeling of bone under physiological conditions and numerous pathological conditions, such as osteoporosis, bone metastasis, and inflammatory bone erosion. Nuclear receptors are crucial to various physiological processes, including metabolism, development and inflammation, and function as transcription factors to activate target genes. Synthetic ligands of nuclear receptors are also available for the treatment of metabolic and inflammatory diseases. However, dysregulated bone phenotypes have been documented in patients who take synthetic nuclear receptor ligands as a therapy. Therefore, the effect of nuclear receptors on bone cells has become an important area of exploration; additionally, the molecular mechanisms underlying the action of nuclear receptors in osteoclasts have not been completely understood. Here, we cover the recent progress in our understanding of the roles of nuclear receptors in osteoclasts.

摘要

破骨细胞是一种骨吸收细胞,在生理条件下和许多病理条件下,如骨质疏松症、骨转移和炎症性骨侵蚀,都发挥着至关重要的作用。核受体对包括代谢、发育和炎症在内的各种生理过程至关重要,它们作为转录因子激活靶基因。核受体的合成配体也可用于治疗代谢和炎症性疾病。然而,接受合成核受体配体治疗的患者出现了骨表型失调的情况。因此,核受体对骨细胞的影响已成为一个重要的探索领域;此外,核受体在破骨细胞中作用的分子机制尚未完全了解。在这里,我们综述了近年来我们对核受体在破骨细胞中作用的理解的最新进展。

相似文献

1
Nuclear receptors in osteoclasts.
Curr Opin Pharmacol. 2020 Aug;53:8-17. doi: 10.1016/j.coph.2020.03.002. Epub 2020 Jun 20.
2
Minireview: nuclear receptor regulation of osteoclast and bone remodeling.
Mol Endocrinol. 2015 Feb;29(2):172-86. doi: 10.1210/me.2014-1316. Epub 2014 Dec 30.
3
Osteoclast receptors and signaling.
Arch Biochem Biophys. 2008 May 15;473(2):147-60. doi: 10.1016/j.abb.2008.01.011. Epub 2008 Jan 24.
6
[Recent advances in basic research of bone metabolism].
Nihon Rinsho. 2002 Mar;60 Suppl 3:25-33.
7
Regulation of bone metabolism by nuclear receptors.
Mol Cell Endocrinol. 2009 Oct 30;310(1-2):3-10. doi: 10.1016/j.mce.2008.08.015. Epub 2008 Aug 22.
8
The TNF receptor superfamily: role in immune inflammation and bone formation.
Immunol Res. 2003;27(2-3):287-94. doi: 10.1385/IR:27:2-3:287.
9
Nuclear Receptors in Skeletal Homeostasis.
Curr Top Dev Biol. 2017;125:71-107. doi: 10.1016/bs.ctdb.2017.01.002. Epub 2017 Feb 28.
10
Genetic regulation of osteoclast development and function.
Nat Rev Genet. 2003 Aug;4(8):638-49. doi: 10.1038/nrg1122.

引用本文的文献

1
Osteoclast Activation and Inflammatory Bone Diseases: Focusing on Receptors in Osteoclasts.
J Inflamm Res. 2025 Mar 4;18:3201-3213. doi: 10.2147/JIR.S507269. eCollection 2025.
2
Osteoporosis: interferon-gamma-mediated bone remodeling in osteoimmunology.
Front Immunol. 2024 May 16;15:1396122. doi: 10.3389/fimmu.2024.1396122. eCollection 2024.
3
Regulation of Osteoclast Differentiation and Activity by Lipid Metabolism.
Cells. 2021 Jan 7;10(1):89. doi: 10.3390/cells10010089.
4
Editorial overview: Immunomodulation 2020 - nuclear receptors.
Curr Opin Pharmacol. 2020 Aug;53:vi-viii. doi: 10.1016/j.coph.2020.10.013.
5
The Crossroads between Infection and Bone Loss.
Microorganisms. 2020 Nov 10;8(11):1765. doi: 10.3390/microorganisms8111765.

本文引用的文献

1
Nuclear Receptors in Cancer Inflammation and Immunity.
Trends Immunol. 2020 Feb;41(2):172-185. doi: 10.1016/j.it.2019.12.006. Epub 2020 Jan 22.
2
Therapeutic modulation of retinoid X receptors - SAR and therapeutic potential of RXR ligands and recent patents.
Expert Opin Ther Pat. 2019 Aug;29(8):605-621. doi: 10.1080/13543776.2019.1643322. Epub 2019 Jul 22.
3
Coordination of Fusion and Trafficking of Pre-osteoclasts at the Marrow-Bone Interface.
Calcif Tissue Int. 2019 Oct;105(4):430-445. doi: 10.1007/s00223-019-00575-4. Epub 2019 Jun 25.
4
Osteoimmunology: evolving concepts in bone-immune interactions in health and disease.
Nat Rev Immunol. 2019 Oct;19(10):626-642. doi: 10.1038/s41577-019-0178-8. Epub 2019 Jun 11.
5
Sirtuin 6 in preosteoclasts suppresses age- and estrogen deficiency-related bone loss by stabilizing estrogen receptor α.
Cell Death Differ. 2019 Nov;26(11):2358-2370. doi: 10.1038/s41418-019-0306-9. Epub 2019 Feb 20.
6
Cooperation of PU.1 With IRF8 and NFATc1 Defines Chromatin Landscapes During RANKL-Induced Osteoclastogenesis.
J Bone Miner Res. 2019 Jun;34(6):1143-1154. doi: 10.1002/jbmr.3689. Epub 2019 Feb 28.
7
Glucocorticoid-Induced Osteoporosis.
N Engl J Med. 2018 Dec 27;379(26):2547-2556. doi: 10.1056/NEJMcp1800214.
8
Estrogen-related receptor γ negatively regulates osteoclastogenesis and protects against inflammatory bone loss.
J Cell Physiol. 2019 Feb;234(2):1659-1670. doi: 10.1002/jcp.27035. Epub 2018 Aug 4.
9
Mechanisms involved in normal and pathological osteoclastogenesis.
Cell Mol Life Sci. 2018 Jul;75(14):2519-2528. doi: 10.1007/s00018-018-2817-9. Epub 2018 Apr 18.
10
Non-genomic effects of nuclear receptors: insights from the anucleate platelet.
Cardiovasc Res. 2018 Apr 1;114(5):645-655. doi: 10.1093/cvr/cvy044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验