Department of Chemistry, University of California Irvine, California 92697, USA.
J Chem Phys. 2020 Jun 21;152(23):234114. doi: 10.1063/5.0008028.
To directly simulate rare events using atomistic molecular dynamics is a significant challenge in computational biophysics. Well-established enhanced-sampling techniques do exist to obtain the thermodynamic functions for such systems. However, developing methods for obtaining the kinetics of long timescale processes from simulation at atomic detail is comparatively less developed an area. Milestoning and the weighted ensemble (WE) method are two different stratification strategies; both have shown promise for computing long timescales of complex biomolecular processes. Nevertheless, both require a significant investment of computational resources. We have combined WE and milestoning to calculate observables in orders-of-magnitude less central processing unit and wall-clock time. Our weighted ensemble milestoning method (WEM) uses WE simulation to converge the transition probability and first passage times between milestones, followed by the utilization of the theoretical framework of milestoning to extract thermodynamic and kinetic properties of the entire process. We tested our method for a simple one-dimensional double-well potential, for an eleven-dimensional potential energy surface with energy barrier, and on the biomolecular model system alanine dipeptide. We were able to recover the free energy profiles, time correlation functions, and mean first passage times for barrier crossing events at a significantly small computational cost. WEM promises to extend the applicability of molecular dynamics simulation to slow dynamics of large systems that are well beyond the scope of present day brute-force computations.
直接使用原子分子动力学来模拟稀有事件是计算生物物理学中的一个重大挑战。现有的增强采样技术确实存在,可用于获得此类系统的热力学函数。然而,从原子细节的模拟中获取长时间尺度过程的动力学的方法的发展相对较少。里程碑和加权系综(WE)方法是两种不同的分层策略;这两种方法都显示出了计算复杂生物分子过程长时间尺度的潜力。然而,这两种方法都需要大量的计算资源。我们结合 WE 和里程碑方法来计算可观测变量,其所需的中央处理器和运行时间都大大减少。我们的加权系综里程碑方法(WEM)使用 WE 模拟来收敛里程碑之间的跃迁概率和首次通过时间,然后利用里程碑方法的理论框架来提取整个过程的热力学和动力学性质。我们在一个简单的一维双势阱势、一个具有能垒的十一位能表面以及生物分子模型体系丙氨酸二肽上测试了我们的方法。我们能够以显著降低的计算成本恢复自由能分布、时间相关函数和跨越势垒事件的平均首次通过时间。WEM 有望将分子动力学模拟的适用性扩展到远远超出当前强力计算范围的大系统的慢动力学。