Suppr超能文献

药物结合动力学的 15 年分子模拟。

15 Years of molecular simulation of drug-binding kinetics.

机构信息

Department of Chemistry and Biochemistry, University of Missouri-St. Louis, St. Louis, MO, USA.

出版信息

Expert Opin Drug Discov. 2023 Jul-Dec;18(12):1333-1348. doi: 10.1080/17460441.2023.2264770. Epub 2023 Nov 1.

Abstract

INTRODUCTION

Drug-binding kinetics has been increasingly recognized as an important factor to be considered in drug discovery. Long residence time could prolong the action of some drugs while produce toxicity on others. Early evaluation of the binding kinetics of drug candidates could reduce attrition rate late in the drug discovery process. Computational prediction of drug-binding kinetics is useful as compounds can be evaluated even before they are made. However, simulation of drug-binding kinetics is a challenging problem because of the long-time scale involved. Nevertheless, significant progress has been made.

AREAS COVERED

This review illustrates the rapid evolution of qualitative to quantitative molecular dynamics-based methods that have been developed over the last 15 years.

EXPERT OPINION

The development of new methods based on molecular dynamics simulations now enables computation of absolute association/dissociation rate constants. Cheaper methods capable of identifying candidates with fast or slow binding kinetics, or rank-ordering rate constants are also available. Together, these methods have generated useful insights into the molecular mechanisms of drug-binding kinetics, and the design of drug candidates with therapeutically favorable kinetics. Although predicting absolute rate constants is still expensive and challenging, rapid improvement is expected in the coming years with the continuing refinement of current technologies, development of new methodologies, and the utilization of machine learning.

摘要

简介

药物结合动力学已逐渐被认为是药物发现中需要考虑的一个重要因素。药物的停留时间延长可能会延长某些药物的作用,而对其他药物则会产生毒性。早期评估候选药物的结合动力学可以降低药物发现过程后期的淘汰率。药物结合动力学的计算预测是有用的,因为即使在化合物合成之前也可以对其进行评估。然而,由于涉及的时间尺度较长,药物结合动力学的模拟仍然是一个具有挑战性的问题。尽管如此,还是取得了显著的进展。

涵盖领域

本文综述了过去 15 年来,从定性到定量的基于分子动力学的方法的快速发展。

专家意见

基于分子动力学模拟的新方法的发展现在能够计算绝对的结合/解离速率常数。也有更廉价的方法可以识别结合动力学较快或较慢的候选物,或者对速率常数进行排序。这些方法共同为药物结合动力学的分子机制以及具有治疗上有利动力学的药物候选物的设计提供了有用的见解。虽然预测绝对速率常数仍然昂贵且具有挑战性,但随着现有技术的不断完善、新方法的开发以及机器学习的应用,预计未来几年这一情况将迅速改善。

相似文献

1
15 Years of molecular simulation of drug-binding kinetics.
Expert Opin Drug Discov. 2023 Jul-Dec;18(12):1333-1348. doi: 10.1080/17460441.2023.2264770. Epub 2023 Nov 1.
2
The prediction of protein-ligand unbinding for modern drug discovery.
Expert Opin Drug Discov. 2022 Feb;17(2):191-205. doi: 10.1080/17460441.2022.2002298. Epub 2021 Nov 12.
3
Baseline Model for Predicting Protein-Ligand Unbinding Kinetics through Machine Learning.
J Chem Inf Model. 2020 Dec 28;60(12):5946-5956. doi: 10.1021/acs.jcim.0c00450. Epub 2020 Nov 13.
4
Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation.
Chem Rev. 2020 Dec 9;120(23):12788-12833. doi: 10.1021/acs.chemrev.0c00534. Epub 2020 Oct 2.
5
Simulation of ligand dissociation kinetics from the protein kinase PYK2.
J Comput Chem. 2022 Oct 30;43(28):1911-1922. doi: 10.1002/jcc.26991. Epub 2022 Sep 8.
6
Understanding the impact of binding free energy and kinetics calculations in modern drug discovery.
Expert Opin Drug Discov. 2024 Jun;19(6):671-682. doi: 10.1080/17460441.2024.2349149. Epub 2024 May 9.
7
Transient States and Barriers from Molecular Simulations and the Milestoning Theory: Kinetics in Ligand-Protein Recognition and Compound Design.
J Chem Theory Comput. 2020 Mar 10;16(3):1882-1895. doi: 10.1021/acs.jctc.9b01153. Epub 2020 Feb 20.
8
Dynamic Docking: A Paradigm Shift in Computational Drug Discovery.
Molecules. 2017 Nov 22;22(11):2029. doi: 10.3390/molecules22112029.
9
Combined Free-Energy Calculation and Machine Learning Methods for Understanding Ligand Unbinding Kinetics.
J Chem Theory Comput. 2022 Apr 12;18(4):2543-2555. doi: 10.1021/acs.jctc.1c00924. Epub 2022 Feb 23.
10
Ranking of Ligand Binding Kinetics Using a Weighted Ensemble Approach and Comparison with a Multiscale Milestoning Approach.
J Chem Inf Model. 2020 Nov 23;60(11):5340-5352. doi: 10.1021/acs.jcim.9b00968. Epub 2020 May 7.

引用本文的文献

1
Pathway Specific Unbinding Free Energy Profiles of Ritonavir Dissociation from HIV-1 Protease.
Biochemistry. 2025 Feb 18;64(4):940-952. doi: 10.1021/acs.biochem.4c00560. Epub 2025 Feb 9.
2
Quantitative Prediction of Dissociation Rates of PYK2 Ligands Using Umbrella Sampling and Milestoning.
J Chem Theory Comput. 2024 May 14;20(9):4029-4044. doi: 10.1021/acs.jctc.4c00192. Epub 2024 Apr 19.

本文引用的文献

2
Quality over quantity: Sampling high probability rare events with the weighted ensemble algorithm.
J Comput Chem. 2023 Mar 30;44(8):935-947. doi: 10.1002/jcc.27054. Epub 2022 Dec 13.
3
Milestoning simulation of ligand dissociation from the glycogen synthase kinase 3β.
Proteins. 2023 Feb;91(2):209-217. doi: 10.1002/prot.26423. Epub 2022 Sep 24.
4
Simulation of ligand dissociation kinetics from the protein kinase PYK2.
J Comput Chem. 2022 Oct 30;43(28):1911-1922. doi: 10.1002/jcc.26991. Epub 2022 Sep 8.
5
SEEKR2: Versatile Multiscale Milestoning Utilizing the OpenMM Molecular Dynamics Engine.
J Chem Inf Model. 2022 Jul 11;62(13):3253-3262. doi: 10.1021/acs.jcim.2c00501. Epub 2022 Jun 27.
6
Markovian Weighted Ensemble Milestoning (M-WEM): Long-Time Kinetics from Short Trajectories.
J Chem Theory Comput. 2022 Jan 11;18(1):79-95. doi: 10.1021/acs.jctc.1c00803. Epub 2021 Dec 15.
8
Ligand unbinding mechanisms and kinetics for T4 lysozyme mutants from τRAMD simulations.
Curr Res Struct Biol. 2021 May 4;3:106-111. doi: 10.1016/j.crstbi.2021.04.001. eCollection 2021.
9
Evolution of the drug-target residence time model.
Expert Opin Drug Discov. 2021 Dec;16(12):1441-1451. doi: 10.1080/17460441.2021.1948997. Epub 2021 Jul 1.
10
Computer Simulations of the Dissociation Mechanism of Gleevec from Abl Kinase with Milestoning.
J Phys Chem B. 2021 Jun 10;125(22):5706-5715. doi: 10.1021/acs.jpcb.1c00264. Epub 2021 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验