Xiao Jing, Zhan Hualin, Wang Xiao, Xu Zai-Quan, Xiong Zhiyuan, Zhang Ke, Simon George P, Liu Jefferson Zhe, Li Dan
Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, Australia.
Department of Materials Science and Engineering, Monash University, Melbourne, Victoria, Australia.
Nat Nanotechnol. 2020 Aug;15(8):683-689. doi: 10.1038/s41565-020-0704-7. Epub 2020 Jun 22.
Graphene-based nanoporous materials have been extensively explored as high-capacity ion electrosorption electrodes for supercapacitors. However, little attention has been paid to exploiting the interactions between electrons that reside in the graphene lattice and the ions adsorbed between the individual graphene sheets. Here we report that the electronic conductance of a multilayered reduced graphene oxide membrane, when used as a supercapacitor electrode, can be modulated by the ionic charging state of the membrane, which gives rise to a collective electrolyte gating effect. This gating effect provides an in-operando approach for probing the charging dynamics of supercapacitors electrically. Using this approach, we observed a pore-size-dependent ionic hysteresis or memory effect in reduced graphene oxide membranes when the interlayer distance is comparable to the ion diameter. Our results may stimulate the design of novel devices based on the ion-electron interactions under nanoconfinement.
基于石墨烯的纳米多孔材料作为超级电容器的高容量离子电吸附电极已得到广泛研究。然而,对于石墨烯晶格中的电子与单个石墨烯片层间吸附的离子之间相互作用的研究却很少。在此我们报道,当用作超级电容器电极时,多层还原氧化石墨烯膜的电子电导可由膜的离子充电状态调节,这会产生集体电解质门控效应。这种门控效应为通过电学方法探测超级电容器的充电动力学提供了一种原位操作途径。利用这种方法,我们观察到当层间距离与离子直径相近时,还原氧化石墨烯膜中存在孔径依赖性离子滞后或记忆效应。我们的结果可能会推动基于纳米限域下离子 - 电子相互作用的新型器件的设计。