Suppr超能文献

基于二维氢键有机骨架复合材料的高性能固态质子门控膜。

High-performance solid-state proton gating membranes based on two-dimensional hydrogen-bonded organic framework composites.

作者信息

Lei Dandan, Wang Yixiang, Zhang Qixiang, Wang Shuqi, Jiang Lei, Zhang Zhen

机构信息

Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, China.

Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China.

出版信息

Nat Commun. 2025 Jan 17;16(1):754. doi: 10.1038/s41467-025-56228-8.

Abstract

Biological ion channels exhibit strong gating effects due to their zero-current closed states. However, the gating capabilities of artificial nanochannels have typically fallen short of biological channels, primarily owing to the larger nanopores that fail to completely block ion transport in the off-states. Here, we demonstrate solid-state hydrogen-bonded organic frameworks-based membranes to achieve high-performance ambient humidity-controlled proton gating, accomplished by switching the proton transport pathway instead of relying on conventional ion blockage/activation effects. Density functional theory calculations reveal that the reversible formation and disruption of humidity-induced water bridges within the frameworks facilitates the switching of proton transport mode from the adsorption site hopping to the Grotthuss mechanism. This transition, coupled with the introduction of bacterial cellulose to enhance desorption/adsorption of water clusters, enables us to achieve a superior proton gating ratio of up to 5740, surpassing state-of-the-art solid-state gating devices. Moreover, the developed membrane operates entirely on solid-state principles, rendering it highly versatile for a myriad of applications from environmental detection to human health monitoring. This study offers perspectives for the design of efficient proton gating systems.

摘要

生物离子通道由于其零电流关闭状态而表现出强烈的门控效应。然而,人工纳米通道的门控能力通常不及生物通道,这主要是由于较大的纳米孔无法在关闭状态下完全阻止离子传输。在此,我们展示了基于固态氢键有机框架的膜,通过切换质子传输途径而非依赖传统的离子阻断/激活效应,实现了高性能的环境湿度控制质子门控。密度泛函理论计算表明,框架内湿度诱导的水桥的可逆形成和破坏促进了质子传输模式从吸附位点跳跃到Grotthuss机制的转变。这种转变,再加上引入细菌纤维素以增强水簇的解吸/吸附,使我们能够实现高达5740的卓越质子门控比,超过了最先进的固态门控装置。此外,所开发的膜完全基于固态原理运行,使其在从环境检测到人体健康监测等众多应用中具有高度通用性。这项研究为高效质子门控系统的设计提供了思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89c1/11739393/bcdcf2eca959/41467_2025_56228_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验