Suppr超能文献

电化学电容器中受限电化学界面的高级表征

Advanced characterization of confined electrochemical interfaces in electrochemical capacitors.

作者信息

Ge Kangkang, Shao Hui, Lin Zifeng, Taberna Pierre-Louis, Simon Patrice

机构信息

Université Toulouse III-Paul Sabatier, CIRIMAT UMR CNRS 5085, Toulouse, France.

i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), Suzhou, People's Republic of China.

出版信息

Nat Nanotechnol. 2025 Feb;20(2):196-208. doi: 10.1038/s41565-024-01821-z. Epub 2024 Dec 5.

Abstract

The advancement of high-performance fast-charging materials has significantly propelled progress in electrochemical capacitors (ECs). Electrochemical capacitors store charges at the nanoscale electrode material-electrolyte interface, where the charge storage and transport mechanisms are mediated by factors such as nanoconfinement, local electrode structure, surface properties and non-electrostatic ion-electrode interactions. This Review offers a comprehensive exploration of probing the confined electrochemical interface using advanced characterization techniques. Unlike classical two-dimensional (2D) planar interfaces, partial desolvation and image charges play crucial roles in effective charge storage under nanoconfinement in porous materials. This Review also highlights the potential of zero charge as a key design principle driving nanoscale ion fluxes and carbon-electrolyte interactions in materials such as 2D and three-dimensional (3D) porous carbons. These considerations are crucial for developing efficient and rapid energy storage solutions for a wide range of applications.

摘要

高性能快速充电材料的发展显著推动了电化学电容器(ECs)的进步。电化学电容器在纳米级电极材料 - 电解质界面存储电荷,在该界面处,电荷存储和传输机制由诸如纳米限域、局部电极结构、表面性质和非静电离子 - 电极相互作用等因素介导。本综述全面探讨了使用先进表征技术探测受限电化学界面的方法。与经典的二维(2D)平面界面不同,部分去溶剂化和镜像电荷在多孔材料的纳米限域下有效电荷存储中起着关键作用。本综述还强调了零电荷作为驱动二维和三维(3D)多孔碳等材料中纳米级离子通量和碳 - 电解质相互作用的关键设计原则的潜力。这些考虑因素对于开发适用于广泛应用的高效快速储能解决方案至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验