Suppr超能文献

基于多维尺度分析的过程数据潜在特征提取。

Latent Feature Extraction for Process Data via Multidimensional Scaling.

机构信息

University of Arizona, Tucson, USA.

Department of Statistics, Columbia University, 1255 Amsterdam Ave, New York, NY, 10027, USA.

出版信息

Psychometrika. 2020 Jun;85(2):378-397. doi: 10.1007/s11336-020-09708-3. Epub 2020 Jun 22.

Abstract

Computer-based interactive items have become prevalent in recent educational assessments. In such items, detailed human-computer interactive process, known as response process, is recorded in a log file. The recorded response processes provide great opportunities to understand individuals' problem solving processes. However, difficulties exist in analyzing these data as they are high-dimensional sequences in a nonstandard format. This paper aims at extracting useful information from response processes. In particular, we consider an exploratory analysis that extracts latent variables from process data through a multidimensional scaling framework. A dissimilarity measure is described to quantify the discrepancy between two response processes. The proposed method is applied to both simulated data and real process data from 14 PSTRE items in PIAAC 2012. A prediction procedure is used to examine the information contained in the extracted latent variables. We find that the extracted latent variables preserve a substantial amount of information in the process and have reasonable interpretability. We also empirically prove that process data contains more information than classic binary item responses in terms of out-of-sample prediction of many variables.

摘要

基于计算机的交互式项目在最近的教育评估中变得非常普遍。在这些项目中,详细的人机交互过程(称为响应过程)被记录在日志文件中。记录的响应过程为了解个人的解决问题过程提供了很好的机会。然而,由于这些数据是高维的非标准格式的序列,因此在分析这些数据时存在困难。本文旨在从响应过程中提取有用信息。具体来说,我们考虑通过多维尺度框架从过程数据中提取潜在变量的探索性分析。描述了一种距离度量来量化两个响应过程之间的差异。该方法应用于 PIAAC 2012 中 14 个 PSTRE 项目的模拟数据和真实过程数据。使用预测过程来检查提取的潜在变量中包含的信息。我们发现,提取的潜在变量在过程中保留了大量信息,并且具有合理的可解释性。我们还通过实证证明,就许多变量的样本外预测而言,过程数据比经典的二进制项目响应包含更多的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验