Suppr超能文献

通过反应过程数据探索解释项目功能差异的证据。

Exploring the Evidence to Interpret Differential Item Functioning via Response Process Data.

作者信息

Li Ziying, Shin Jinnie, Kuang Huan, Huggins-Manley A Corinne

机构信息

University of Florida, Gainesville, USA.

Florida State University, Tallahassee, USA.

出版信息

Educ Psychol Meas. 2024 Nov 29:00131644241298975. doi: 10.1177/00131644241298975.

Abstract

Evaluating differential item functioning (DIF) in assessments plays an important role in achieving measurement fairness across different subgroups, such as gender and native language. However, relying solely on the item response scores among traditional DIF techniques poses challenges for researchers and practitioners in interpreting DIF. Recently, response process data, which carry valuable information about examinees' response behaviors, offer an opportunity to further interpret DIF items by examining differences in response processes. This study aims to investigate the potential of response process data features in improving the interpretability of DIF items, with a focus on gender DIF using data from the Programme for International Assessment of Adult Competencies (PIAAC) 2012 computer-based numeracy assessment. We applied random forest and logistic regression with ridge regularization to investigate the association between process data features and DIF items, evaluating the important features to interpret DIF. In addition, we evaluated model performance across varying percentages of DIF items to reflect practical scenarios with different percentages of DIF items. The results demonstrate that the combination of timing features and action-sequence features is informative to reveal the response process differences between groups, thereby enhancing DIF item interpretability. Overall, this study introduces a feasible procedure to leverage response process data to understand and interpret DIF items, shedding light on potential reasons for the low agreement between DIF statistics and expert reviews and revealing potential irrelevant factors to enhance measurement equity.

摘要

在评估中评估项目功能差异(DIF)对于实现不同亚组(如性别和母语)间的测量公平性起着重要作用。然而,在传统的DIF技术中,仅依靠项目反应分数给研究人员和从业者解释DIF带来了挑战。最近,包含考生反应行为有价值信息的反应过程数据,为通过检查反应过程差异进一步解释DIF项目提供了机会。本研究旨在探讨反应过程数据特征在提高DIF项目可解释性方面的潜力,重点是利用2012年成人能力国际评估项目(PIAAC)基于计算机的算术评估数据进行性别DIF研究。我们应用随机森林和带岭正则化的逻辑回归来研究过程数据特征与DIF项目之间的关联,评估解释DIF的重要特征。此外,我们评估了不同比例DIF项目的模型性能,以反映不同比例DIF项目的实际情况。结果表明,时间特征和动作序列特征的组合有助于揭示组间反应过程差异,从而提高DIF项目的可解释性。总体而言,本研究引入了一种可行的程序,利用反应过程数据来理解和解释DIF项目,阐明了DIF统计与专家评审之间低一致性的潜在原因,并揭示了潜在的无关因素以提高测量公平性。

相似文献

2
Using Odds Ratios to Detect Differential Item Functioning.使用优势比来检测项目功能差异
Appl Psychol Meas. 2018 Nov;42(8):613-629. doi: 10.1177/0146621618762738. Epub 2018 Mar 21.

本文引用的文献

2
Subtask analysis of process data through a predictive model.通过预测模型对过程数据进行子任务分析。
Br J Math Stat Psychol. 2023 Feb;76(1):211-235. doi: 10.1111/bmsp.12290. Epub 2022 Nov 1.
3
Accurate Assessment via Process Data.通过过程数据进行准确评估。
Psychometrika. 2023 Mar;88(1):76-97. doi: 10.1007/s11336-022-09880-8. Epub 2022 Aug 13.
7
Latent Feature Extraction for Process Data via Multidimensional Scaling.基于多维尺度分析的过程数据潜在特征提取。
Psychometrika. 2020 Jun;85(2):378-397. doi: 10.1007/s11336-020-09708-3. Epub 2020 Jun 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验