Suppr超能文献

解决问题项目中复发事件的潜在类别分析。

Latent Class Analysis of Recurrent Events in Problem-Solving Items.

作者信息

Xu Haochen, Fang Guanhua, Chen Yunxiao, Liu Jingchen, Ying Zhiliang

机构信息

Fudan University, Shanghai, China.

Columbia University, New York, NY, USA.

出版信息

Appl Psychol Meas. 2018 Sep;42(6):478-498. doi: 10.1177/0146621617748325. Epub 2018 Apr 9.

Abstract

Computer-based assessment of complex problem-solving abilities is becoming more and more popular. In such an assessment, the entire problem-solving process of an examinee is recorded, providing detailed information about the individual, such as behavioral patterns, speed, and learning trajectory. The problem-solving processes are recorded in a computer log file which is a time-stamped documentation of events related to task completion. As opposed to cross-sectional response data from traditional tests, process data in log files are massive and irregularly structured, calling for effective exploratory data analysis methods. Motivated by a specific complex problem-solving item "Climate Control" in the 2012 Programme for International Student Assessment, the authors propose a latent class analysis approach to analyzing the events occurred in the problem-solving processes. The exploratory latent class analysis yields meaningful latent classes. Simulation studies are conducted to evaluate the proposed approach.

摘要

基于计算机的复杂问题解决能力评估正变得越来越流行。在这样的评估中,考生的整个问题解决过程都会被记录下来,提供有关个人的详细信息,如行为模式、速度和学习轨迹。问题解决过程记录在计算机日志文件中,该文件是与任务完成相关事件的时间戳文档。与传统测试的横断面响应数据不同,日志文件中的过程数据量大且结构不规则,需要有效的探索性数据分析方法。受2012年国际学生评估项目中一个特定的复杂问题解决项目“气候控制”的启发,作者提出了一种潜在类别分析方法来分析问题解决过程中发生的事件。探索性潜在类别分析产生了有意义的潜在类别。进行了模拟研究以评估所提出的方法。

相似文献

1
Latent Class Analysis of Recurrent Events in Problem-Solving Items.
Appl Psychol Meas. 2018 Sep;42(6):478-498. doi: 10.1177/0146621617748325. Epub 2018 Apr 9.
2
Statistical Analysis of Complex Problem-Solving Process Data: An Event History Analysis Approach.
Front Psychol. 2019 Mar 18;10:486. doi: 10.3389/fpsyg.2019.00486. eCollection 2019.
3
A latent topic model with Markov transition for process data.
Br J Math Stat Psychol. 2020 Nov;73(3):474-505. doi: 10.1111/bmsp.12197. Epub 2020 Jan 8.
5
An exploratory analysis of the latent structure of process data via action sequence autoencoders.
Br J Math Stat Psychol. 2021 Feb;74(1):1-33. doi: 10.1111/bmsp.12203. Epub 2020 May 22.
6
A Continuous-Time Dynamic Choice Measurement Model for Problem-Solving Process Data.
Psychometrika. 2020 Dec;85(4):1052-1075. doi: 10.1007/s11336-020-09734-1. Epub 2020 Dec 21.
7
DIAGNOSTIC Classification Analysis of Problem-Solving Competence using Process Data: An Item Expansion Method.
Psychometrika. 2022 Dec;87(4):1529-1547. doi: 10.1007/s11336-022-09855-9. Epub 2022 Apr 7.
9
Understanding students' problem-solving patterns: Evidence from an allotted response time in a PISA 2012 item.
Front Psychol. 2023 Jan 4;13:1050435. doi: 10.3389/fpsyg.2022.1050435. eCollection 2022.
10
Latent Feature Extraction for Process Data via Multidimensional Scaling.
Psychometrika. 2020 Jun;85(2):378-397. doi: 10.1007/s11336-020-09708-3. Epub 2020 Jun 22.

引用本文的文献

3
Investigating response behavior through TF-IDF and Word2vec text analysis: A case study of PISA 2012 problem-solving process data.
Heliyon. 2024 Aug 10;10(16):e35945. doi: 10.1016/j.heliyon.2024.e35945. eCollection 2024 Aug 30.
4
Combining Clickstream Analyses and Graph-Modeled Data Clustering for Identifying Common Response Processes.
Psychometrika. 2021 Mar;86(1):190-214. doi: 10.1007/s11336-020-09743-0. Epub 2021 Feb 5.
5
Statistical Analysis of Complex Problem-Solving Process Data: An Event History Analysis Approach.
Front Psychol. 2019 Mar 18;10:486. doi: 10.3389/fpsyg.2019.00486. eCollection 2019.

本文引用的文献

1
Modelling dyadic interaction with Hawkes processes.
Psychometrika. 2013 Oct;78(4):793-814. doi: 10.1007/s11336-013-9329-1. Epub 2013 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验