Spatial Signalling Team, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
Signal Transduction and Molecular Pharmacology Team, CRUK Cancer Therapeutics Unit, Division of Cancer Therapeutics, Institute of Cancer Research, 15 Cotswold Road, Sutton, London SM2 5NG, UK.
Sci Signal. 2020 Jun 23;13(637):eaba8627. doi: 10.1126/scisignal.aba8627.
Receptor tyrosine kinases (RTKs) are often overexpressed or mutated in cancers and drive tumor growth and metastasis. In the current model of RTK signaling, including that of MET, downstream phosphatidylinositol 3-kinase (PI3K) mediates both cell proliferation and cell migration, whereas the small guanosine triphosphatase (GTPase) Rac1 mediates cell migration. However, in cultured NIH3T3 and glioblastoma cells, we found that class I PI3K mediated oncogenic MET-induced cell migration but not anchorage-independent growth. In contrast, Rac1 regulated both processes in distinct ways. Downstream of PI3K, Rac1 mediated cell migration through its GTPase activity, whereas independently of PI3K, Rac1 mediated anchorage-independent growth in a GTPase-independent manner through an adaptor function. Through its RKR motif, Rac1 formed a complex with the kinase mTOR to promote its translocation to the plasma membrane, where its activity promoted anchorage-independent growth of the cell cultures. Inhibiting mTOR with rapamycin suppressed the growth of subcutaneous MET-mutant cell grafts in mice, including that of MET inhibitor-resistant cells. These findings reveal a GTPase-independent role for Rac1 in mediating a PI3K-independent MET-to-mTOR pathway and suggest alternative or combined strategies that might overcome resistance to RTK inhibitors in patients with cancer.
受体酪氨酸激酶(RTKs)在癌症中经常过表达或发生突变,从而促进肿瘤生长和转移。在目前的 RTK 信号转导模型中,包括 MET,下游的磷酸肌醇 3-激酶(PI3K)介导细胞增殖和细胞迁移,而小 G 蛋白(GTPase)Rac1 则介导细胞迁移。然而,在培养的 NIH3T3 和神经胶质瘤细胞中,我们发现 I 类 PI3K 介导致癌性 MET 诱导的细胞迁移,但不介导非锚定依赖性生长。相反,Rac1 通过不同的方式调节这两个过程。在 PI3K 下游,Rac1 通过其 GTP 酶活性介导细胞迁移,而独立于 PI3K,Rac1 通过衔接蛋白功能以 GTP 酶非依赖性方式介导非锚定依赖性生长。通过其 RKR 基序,Rac1 与激酶 mTOR 形成复合物,促进其易位到质膜,在质膜上其活性促进细胞培养的非锚定依赖性生长。用雷帕霉素抑制 mTOR 可抑制小鼠中 MET 突变细胞移植物的生长,包括对 MET 抑制剂耐药的细胞。这些发现揭示了 Rac1 在介导非 PI3K 依赖性 MET 到 mTOR 通路中的 GTP 酶非依赖性作用,并提示了可能克服癌症患者对 RTK 抑制剂耐药的替代或联合策略。