Suppr超能文献

滚环扩增合成 DNA 相对于传统方法加速了生物催化酶活性的测定。

Rolling circle amplification of synthetic DNA accelerates biocatalytic determination of enzyme activity relative to conventional methods.

机构信息

GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania, 19426, USA.

GE Global Research, One Research Circle, Niskayuna, NY, 12309, USA.

出版信息

Sci Rep. 2020 Jun 24;10(1):10279. doi: 10.1038/s41598-020-67307-9.

Abstract

The ability to quickly and easily assess the activity of large collections of enzymes for a desired substrate holds great promise in the field of biocatalysis. Cell-free synthesis, although not practically amenable for large-scale enzyme production, provides a way to accelerate the timeline for screening enzyme candidates using small-scale reactions. However, because cell-free enzyme synthesis requires a considerable amount of template DNA, the preparation of high-quality DNA "parts" in large quantities represents a costly and rate-limiting prerequisite for high throughput screening. Based on time-cost analysis and comparative activity data, a cell-free workflow using synthetic DNA minicircles and rolling circle amplification enables comparable biocatalytic activity to cell-based workflows in almost half the time. We demonstrate this capability using a panel of sequences from the carbon-nitrogen hydrolase superfamily that represent possible green catalysts for synthesizing small molecules with less waste compared to traditional industrial chemistry. This method provides a new alternative to more cumbersome plasmid- or PCR-based protein expression workflows and should be amenable to automation for accelerating enzyme screening in industrial applications.

摘要

快速、轻松地评估大量酶对目标底物的活性,这在生物催化领域具有巨大的应用前景。无细胞合成虽然不太适用于大规模的酶生产,但为使用小规模反应筛选酶候选物提供了一种加速时间表的方法。然而,由于无细胞酶合成需要相当数量的模板 DNA,因此大量制备高质量的 DNA“部件”是高通量筛选的一个昂贵且具有限速性的前提条件。基于时间成本分析和比较活性数据,使用合成 DNA 迷你环和滚环扩增的无细胞工作流程可以在几乎一半的时间内实现与基于细胞的工作流程相当的生物催化活性。我们使用来自碳氮水解酶超家族的一系列序列证明了这一能力,这些序列代表了与传统工业化学相比,用于合成小分子的可能绿色催化剂,产生的废物更少。这种方法为更繁琐的基于质粒或 PCR 的蛋白质表达工作流程提供了一种新的替代方法,并且应该适合自动化,以加速工业应用中的酶筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6294/7314814/24fb7db95fc9/41598_2020_67307_Fig1_HTML.jpg

相似文献

2
[Synthesis of Circular DNA Templates with T4 RNA Ligase for Rolling Circle Amplification].
Mol Biol (Mosk). 2017 Jul-Aug;51(4):724-733. doi: 10.7868/S0026898417040164.
3
Cell-free protein synthesis using multiply-primed rolling circle amplification products.
Biotechniques. 2009 Jul;47(1):637-9. doi: 10.2144/000113171.
4
Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification.
Nucleic Acids Res. 2009 Feb;37(3):e19. doi: 10.1093/nar/gkn1014. Epub 2008 Dec 23.
7
Multiply primed rolling-circle amplification method for the amplification of circular DNA viruses.
Cold Spring Harb Protoc. 2010 Apr;2010(4):pdb.prot5415. doi: 10.1101/pdb.prot5415.
10
A novel isothermal method using rolling circle reverse transcription for accurate amplification of small RNA sequences.
Biochimie. 2019 Aug;163:137-141. doi: 10.1016/j.biochi.2019.06.003. Epub 2019 Jun 7.

引用本文的文献

1
Cell-Free Gene Expression: Methods and Applications.
Chem Rev. 2025 Jan 8;125(1):91-149. doi: 10.1021/acs.chemrev.4c00116. Epub 2024 Dec 19.
2
Amplified DNA heterogeneity assessment with Oxford Nanopore sequencing applied to cell free expression templates.
PLoS One. 2024 Dec 3;19(12):e0305457. doi: 10.1371/journal.pone.0305457. eCollection 2024.
4
HyperXpress: Rapid Single Vessel DNA Assembly and Protein Production in Microliterscale.
Front Bioeng Biotechnol. 2022 Apr 1;10:832176. doi: 10.3389/fbioe.2022.832176. eCollection 2022.
5
Study on Factors Affecting the Performance of a CRISPR/Cas-Assisted New Immunoassay: Detection of Salivary Insulin as an Example.
Front Bioeng Biotechnol. 2021 Nov 11;9:752514. doi: 10.3389/fbioe.2021.752514. eCollection 2021.

本文引用的文献

1
Development of a cell-free protein synthesis platform for rapid screening of gene regulatory elements.
Synth Biol (Oxf). 2018 May 9;3(1):ysy003. doi: 10.1093/synbio/ysy003. eCollection 2018.
2
Rapid prototyping of proteins: Mail order gene fragments to assayable proteins within 24 hours.
Biotechnol Bioeng. 2019 Mar;116(3):667-676. doi: 10.1002/bit.26912. Epub 2019 Jan 16.
3
Conversion of aliphatic nitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191.
World J Microbiol Biotechnol. 2018 Jun 12;34(7):91. doi: 10.1007/s11274-018-2477-9.
4
Bioengineering of Nitrilases Towards Its Use as Green Catalyst: Applications and Perspectives.
Indian J Microbiol. 2017 Jun;57(2):131-138. doi: 10.1007/s12088-017-0645-5. Epub 2017 Mar 25.
5
Biocatalysis in the Pharmaceutical Industry: The Need for Speed.
ACS Med Chem Lett. 2017 Apr 18;8(5):476-480. doi: 10.1021/acsmedchemlett.7b00114. eCollection 2017 May 11.
6
Short DNA containing χ sites enhances DNA stability and gene expression in E. coli cell-free transcription-translation systems.
Biotechnol Bioeng. 2017 Sep;114(9):2137-2141. doi: 10.1002/bit.26333. Epub 2017 May 23.
7
Cell-Free Protein Synthesis: Pros and Cons of Prokaryotic and Eukaryotic Systems.
Chembiochem. 2015 Nov;16(17):2420-31. doi: 10.1002/cbic.201500340. Epub 2015 Oct 19.
8
High Throughput Screening and Selection Methods for Directed Enzyme Evolution.
Ind Eng Chem Res. 2015 Apr 29;54(16):4011-4020. doi: 10.1021/ie503060a. Epub 2014 Oct 3.
9
A high-throughput screening method for determining the substrate scope of nitrilases.
Chem Commun (Camb). 2015 Feb 14;51(13):2660-2. doi: 10.1039/c4cc06021k.
10
Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system.
ACS Synth Biol. 2014 Jun 20;3(6):387-97. doi: 10.1021/sb400131a. Epub 2013 Dec 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验