Suppr超能文献

用于木质素增值的微生物多样性生物勘探:干湿筛选方法

Bioprospecting Microbial Diversity for Lignin Valorization: Dry and Wet Screening Methods.

作者信息

Gonçalves Carolyne Caetano, Bruce Thiago, Silva Caio de Oliveira Gorgulho, Fillho Edivaldo Ximenes Ferreira, Noronha Eliane Ferreira, Carlquist Magnus, Parachin Nádia Skorupa

机构信息

Department of Genomic Science and Biotechnology, Universidade Católica de Brasília - UCB, Brasília, Brazil.

Laboratory of Enzymology, Department of Cellular Biology, University of Brasília, Brasília, Brazil.

出版信息

Front Microbiol. 2020 Jun 9;11:1081. doi: 10.3389/fmicb.2020.01081. eCollection 2020.

Abstract

Lignin is an abundant cell wall component, and it has been used mainly for generating steam and electricity. Nevertheless, lignin valorization, i.e. the conversion of lignin into high value-added fuels, chemicals, or materials, is crucial for the full implementation of cost-effective lignocellulosic biorefineries. From this perspective, rapid screening methods are crucial for time- and resource-efficient development of novel microbial strains and enzymes with applications in the lignin biorefinery. The present review gives an overview of recent developments and applications of a vast arsenal of activity and sequence-based methodologies for uncovering novel microbial strains with ligninolytic potential, novel enzymes for lignin depolymerization and for unraveling the main metabolic routes during growth on lignin. Finally, perspectives on the use of each of the presented methods and their respective advantages and disadvantages are discussed.

摘要

木质素是一种丰富的细胞壁成分,主要用于产生蒸汽和电力。然而,木质素的增值,即将木质素转化为高附加值的燃料、化学品或材料,对于全面实施具有成本效益的木质纤维素生物精炼厂至关重要。从这个角度来看,快速筛选方法对于高效开发具有木质素生物精炼应用潜力的新型微生物菌株和酶至关重要。本综述概述了大量基于活性和序列的方法的最新进展和应用,这些方法用于发现具有木质素分解潜力的新型微生物菌株、用于木质素解聚的新型酶以及揭示在木质素上生长期间的主要代谢途径。最后,讨论了所介绍的每种方法的使用及其各自优缺点的观点。

相似文献

1
Bioprospecting Microbial Diversity for Lignin Valorization: Dry and Wet Screening Methods.
Front Microbiol. 2020 Jun 9;11:1081. doi: 10.3389/fmicb.2020.01081. eCollection 2020.
2
Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization.
Bioresour Technol. 2019 Nov;291:121898. doi: 10.1016/j.biortech.2019.121898. Epub 2019 Jul 26.
3
From gene to biorefinery: microbial β-etherases as promising biocatalysts for lignin valorization.
Front Microbiol. 2015 Sep 4;6:916. doi: 10.3389/fmicb.2015.00916. eCollection 2015.
5
Biomass Fractionation and Lignin Fractionation towards Lignin Valorization.
ChemSusChem. 2020 Sep 7;13(17):4284-4295. doi: 10.1002/cssc.202001491. Epub 2020 Jul 30.
6
Catalytic Strategies Towards Lignin-Derived Chemicals.
Top Curr Chem (Cham). 2018 Aug 27;376(5):36. doi: 10.1007/s41061-018-0214-3.
7
Lignin valorization using biological approach.
Biotechnol Appl Biochem. 2021 Jun;68(3):459-468. doi: 10.1002/bab.1995. Epub 2020 Aug 13.
9
2G waste lignin to fuel and high value-added chemicals: Approaches, challenges and future outlook for sustainable development.
Chemosphere. 2021 Apr;268:129326. doi: 10.1016/j.chemosphere.2020.129326. Epub 2020 Dec 16.
10
Creative biological lignin conversion routes toward lignin valorization.
Trends Biotechnol. 2022 Dec;40(12):1550-1566. doi: 10.1016/j.tibtech.2022.09.014. Epub 2022 Oct 18.

引用本文的文献

1
Pharmaceutical applications of lignin-derived chemicals and lignin-based materials: linking lignin source and processing with clinical indication.
Biomass Convers Biorefin. 2024;14(21):26553-26574. doi: 10.1007/s13399-023-03745-5. Epub 2023 Jan 21.
4
Exploring Bacterial Attributes That Underpin Symbiont Life in the Monogastric Gut.
Appl Environ Microbiol. 2022 Sep 22;88(18):e0112822. doi: 10.1128/aem.01128-22. Epub 2022 Aug 29.
5
Microbial Valorization of Lignin to Bioplastic by Genome-Reduced .
Front Microbiol. 2022 May 30;13:923664. doi: 10.3389/fmicb.2022.923664. eCollection 2022.

本文引用的文献

1
Database resources of the National Center for Biotechnology Information.
Nucleic Acids Res. 2020 Jan 8;48(D1):D9-D16. doi: 10.1093/nar/gkz899.
2
Simultaneous Determination of Manganese Peroxidase and Lignin Peroxidase by Capillary Electrophoresis Enzyme Assays.
ACS Omega. 2017 Oct 27;2(10):7329-7333. doi: 10.1021/acsomega.7b00998. eCollection 2017 Oct 31.
3
Mapping the diversity of microbial lignin catabolism: experiences from the eLignin database.
Appl Microbiol Biotechnol. 2019 May;103(10):3979-4002. doi: 10.1007/s00253-019-09692-4. Epub 2019 Apr 8.
4
A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products.
Biotechnol Adv. 2019 Nov 1;37(6):107360. doi: 10.1016/j.biotechadv.2019.02.016. Epub 2019 Apr 6.
5
Recent advances in lignin valorization with bacterial cultures: microorganisms, metabolic pathways, and bio-products.
Biotechnol Biofuels. 2019 Feb 15;12:32. doi: 10.1186/s13068-019-1376-0. eCollection 2019.
7
Rapid characterization of the activities of lignin-modifying enzymes based on nanostructure-initiator mass spectrometry (NIMS).
Biotechnol Biofuels. 2018 Sep 27;11:266. doi: 10.1186/s13068-018-1261-2. eCollection 2018.
8
A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential.
Bioresour Technol. 2019 Jan;271:462-472. doi: 10.1016/j.biortech.2018.09.070. Epub 2018 Sep 18.
9
The current and emerging sources of technical lignins and their applications.
Biofuel Bioprod Biorefin. 2018 Jul 18;0:1-32. doi: 10.1002/bbb.1913.
10
Lignin depolymerization and utilization by bacteria.
Bioresour Technol. 2018 Dec;269:557-566. doi: 10.1016/j.biortech.2018.08.118. Epub 2018 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验