Suppr超能文献

用于识别乳腺癌死亡率预测因素的参数生存模型:一种加速失效时间方法。

Parametric survival model to identify the predictors of breast cancer mortality: An accelerated failure time approach.

作者信息

Iraji Zeinab, Jafari Koshki Tohid, Dolatkhah Roya, Asghari Jafarabadi Mohammad

机构信息

Department of Statistics and Epidemiology, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.

Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

出版信息

J Res Med Sci. 2020 Apr 13;25:38. doi: 10.4103/jrms.JRMS_743_19. eCollection 2020.

Abstract

BACKGROUND

Breast cancer (BC) was the fifth cause of mortality worldwide in 2015 and second cause of mortality in Iran in 2012. This study aimed to explore factors associated with survival of patients with BC using parametric survival models.

MATERIALS AND METHODS

Data of 1154 patients that diagnosed with BC recorded in the East Azerbaijan population-based cancer registry database between March 2007 and March 2016. The parametric survival model with an accelerated failure time (AFT) approach was used to assess the association between sex, age, grade, and morphology with time to death.

RESULTS

A total of 217 (18.8%) individuals experienced death due to BC by the end of the study. Among the fitted parametric survival models including exponential, Weibull, log logistic, and log-normal models, the log-normal model was the best model with the Akaike information criterion = 1441.47 and Bayesian information criterion = 1486.93 where patients with higher ages (time ratio [TR] =0.693; 95% confidence interval [CI] = [0.531, 0.904]) and higher grades (TR = 0.350; 95% CI = [0.201, 0.608]) had significantly lower survival while the lobular carcinoma type of morphology (TR = 1.975; 95% CI = [1.049, 3.720]) had significantly higher survival.

CONCLUSION

Log-normal model showed to be an optimal tool to model the survival of patients with BC in the current study. Age, grade, and morphology showed significant association with time to death in patients with BC using AFT model. This finding could be recommended for planning and health policymaking in patients with BC. However, the impact of the models used for analysis on the significance and magnitude of estimated effects should be acknowledged.

摘要

背景

乳腺癌(BC)在2015年是全球第五大致死原因,在2012年是伊朗第二大致死原因。本研究旨在使用参数生存模型探讨与BC患者生存相关的因素。

材料与方法

2007年3月至2016年3月间在东阿塞拜疆基于人群的癌症登记数据库中记录的1154例诊断为BC的患者的数据。采用加速失效时间(AFT)方法的参数生存模型来评估性别、年龄、分级和形态与死亡时间之间的关联。

结果

到研究结束时,共有217例(18.8%)个体因BC死亡。在包括指数模型、威布尔模型、对数逻辑模型和对数正态模型在内的拟合参数生存模型中,对数正态模型是最佳模型,其赤池信息准则 = 1441.47,贝叶斯信息准则 = 1486.93,其中年龄较大的患者(时间比[TR]=0.693;95%置信区间[CI]=[0.531, 0.904])和分级较高的患者(TR = 0.350;95% CI = [0.2, 0.608])的生存率显著较低,而小叶癌形态类型的患者(TR = 1.975;95% CI = [1.049, 3.720])的生存率显著较高。

结论

在本研究中,对数正态模型显示是模拟BC患者生存的最佳工具。使用AFT模型时,年龄、分级和形态与BC患者的死亡时间显示出显著关联。这一发现可推荐用于BC患者的规划和卫生政策制定。然而,应认识到用于分析的模型对估计效应的显著性和大小的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/186c/7306232/2584bce23cc3/JRMS-25-38-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验