Suppr超能文献

通过数据库中的知识发现预测乳腺癌生存率。

Prediction of breast cancer survival through knowledge discovery in databases.

作者信息

Lotfnezhad Afshar Hadi, Ahmadi Maryam, Roudbari Masoud, Sadoughi Farahnaz

机构信息

1. Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran 2. Department of Health Information Technology (HIT), Faculty of Paramedicine, Urmia University of Medical Sciences, Urmia, Iran.

出版信息

Glob J Health Sci. 2015 Jan 26;7(4):392-8. doi: 10.5539/gjhs.v7n4p392.

Abstract

The collection of large volumes of medical data has offered an opportunity to develop prediction models for survival by the medical research community. Medical researchers who seek to discover and extract hidden patterns and relationships among large number of variables use knowledge discovery in databases (KDD) to predict the outcome of a disease. The study was conducted to develop predictive models and discover relationships between certain predictor variables and survival in the context of breast cancer. This study is Cross sectional. After data preparation, data of 22,763 female patients, mean age 59.4 years, stored in the Surveillance Epidemiology and End Results (SEER) breast cancer dataset were analyzed anonymously. IBM SPSS Statistics 16, Access 2003 and Excel 2003 were used in the data preparation and IBM SPSS Modeler 14.2 was used in the model design. Support Vector Machine (SVM) model outperformed other models in the prediction of breast cancer survival. Analysis showed SVM model detected ten important predictor variables contributing mostly to prediction of breast cancer survival. Among important variables, behavior of tumor as the most important variable and stage of malignancy as the least important variable were identified. In current study, applying of the knowledge discovery method in the breast cancer dataset predicted the survival condition of breast cancer patients with high confidence and identified the most important variables participating in breast cancer survival.

摘要

大量医学数据的收集为医学研究界提供了开发生存预测模型的机会。试图在大量变量中发现并提取隐藏模式和关系的医学研究人员利用数据库知识发现(KDD)来预测疾病的结果。本研究旨在开发预测模型,并在乳腺癌背景下发现某些预测变量与生存之间的关系。本研究为横断面研究。在数据准备之后,对存储在监测、流行病学和最终结果(SEER)乳腺癌数据集中的22763名女性患者的数据进行了匿名分析,这些患者的平均年龄为59.4岁。在数据准备过程中使用了IBM SPSS Statistics 16、Access 2003和Excel 2003,在模型设计中使用了IBM SPSS Modeler 14.2。支持向量机(SVM)模型在预测乳腺癌生存方面优于其他模型。分析表明,SVM模型检测到十个对预测乳腺癌生存贡献最大的重要预测变量。在重要变量中,肿瘤行为被确定为最重要的变量,恶性肿瘤分期被确定为最不重要的变量。在当前研究中,将知识发现方法应用于乳腺癌数据集能够高度可靠地预测乳腺癌患者的生存状况,并识别出参与乳腺癌生存的最重要变量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c24d/4802184/5ca43c53dedb/GJHS-7-392-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验