Li Li, Xie Zhengjun, Jiang Gaoxue, Wang Yijing, Cao Bingqiang, Yuan Changzhou
School of Materials Science & Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
Small. 2020 Aug;16(32):e2001526. doi: 10.1002/smll.202001526. Epub 2020 Jun 25.
Recently, binary ZnCo O has drawn enormous attention for lithium-ion batteries (LIBs) as attractive anode owing to its large theoretical capacity and good environmental benignity. However, the modest electrical conductivity and serious volumetric effect/particle agglomeration over cycling hinder its extensive applications. To address the concerns, herein, a rapid laser-irradiation methodology is firstly devised toward efficient synthesis of oxygen-vacancy abundant nano-ZnCo O /porous reduced graphene oxide (rGO) hybrids as anodes for LIBs. The synergistic contributions from nano-dimensional ZnCo O with rich oxygen vacancies and flexible rGO guarantee abundant active sites, fast electron/ion transport, and robust structural stability, and inhibit the agglomeration of nanoscale ZnCo O , favoring for superb electrochemical lithium-storage performance. More encouragingly, the optimal L-ZCO@rGO-30 anode exhibits a large reversible capacity of ≈1053 mAh g at 0.05 A g , excellent cycling stability (≈746 mAh g at 1.0 A g after 250 cycles), and preeminent rate capability (≈686 mAh g at 3.2 A g ). Further kinetic analysis corroborates that the capacitive-controlled process dominates the involved electrochemical reactions of hybrid anodes. More significantly, this rational design holds the promise of being extended for smart fabrication of other oxygen-vacancy abundant metal oxide/porous rGO hybrids toward advanced LIBs and beyond.
最近,二元ZnCoO因其具有较大的理论容量和良好的环境友好性,作为一种有吸引力的锂离子电池(LIBs)负极材料而备受关注。然而,其适度的电导率以及在循环过程中严重的体积效应/颗粒团聚阻碍了它的广泛应用。为了解决这些问题,本文首先设计了一种快速激光辐照方法,用于高效合成富含氧空位的纳米ZnCoO/多孔还原氧化石墨烯(rGO)复合材料作为LIBs的负极。纳米尺寸的富含氧空位的ZnCoO和柔性rGO的协同作用保证了丰富的活性位点、快速的电子/离子传输以及强大的结构稳定性,并抑制了纳米级ZnCoO的团聚,有利于实现卓越的电化学锂存储性能。更令人鼓舞的是,最优的L-ZCO@rGO-30负极在0.05 A g时表现出约1053 mAh g的大可逆容量、优异的循环稳定性(在1.0 A g下循环250次后约为746 mAh g)以及卓越的倍率性能(在3.2 A g下约为686 mAh g)。进一步的动力学分析证实,电容控制过程主导了复合负极所涉及的电化学反应。更重要的是,这种合理的设计有望扩展到其他富含氧空位的金属氧化物/多孔rGO复合材料的智能制备,用于先进的LIBs及其他领域。