Gopalakrishnan Mohan, Kao-Ian Wathanyu, Rittiruam Meena, Praserthdam Supareak, Praserthdam Piyasan, Limphirat Wanwisa, Nguyen Mai Thanh, Yonezawa Tetsu, Kheawhom Soorathep
Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand.
Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok 10330, Thailand.
ACS Appl Mater Interfaces. 2024 Mar 6;16(9):11537-11551. doi: 10.1021/acsami.3c17789. Epub 2024 Feb 15.
The strategy of defect engineering is increasingly recognized for its pivotal role in modulating the electronic structure, thereby significantly improving the electrocatalytic performance of materials. In this study, we present defect-enriched nickel and iron oxides as highly active and cost-effective electrocatalysts, denoted as NiFeO@NC, derived from NiFe-based metal-organic frameworks (MOFs) for oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). XANES and EXAFS confirm that the crystals have a distorted structure and metal vacancies. The cation defect-rich NiFeO@NC electrocatalyst exhibits exceptional ORR and OER activities (Δ = 0.68 V). Mechanistic pathways of electrochemical reactions are studied by DFT calculations. Furthermore, a rechargeable zinc-air battery (RZAB) using the NiFeO@NC catalyst demonstrates a peak power density of 187 mW cm and remarkable long-term cycling stability. The flexible solid-state ZAB using the NiFeO@NC catalyst exhibits a power density of 66 mW cm. The proposed structural design strategy allows for the rational design of electronic delocalization of cation defect-rich NiFe spinel ferrite attached to ultrathin N-doped graphitic carbon sheets in order to enhance active site availability and facilitate mass and electron transport.
缺陷工程策略因其在调节电子结构方面的关键作用而日益受到认可,从而显著提高材料的电催化性能。在本研究中,我们展示了富含缺陷的镍铁氧化物作为高活性且具有成本效益的电催化剂,记为NiFeO@NC,它源自用于氧还原反应(ORR)和析氧反应(OER)的镍铁基金属有机框架(MOF)。X射线吸收近边结构(XANES)和扩展X射线吸收精细结构(EXAFS)证实晶体具有扭曲结构和金属空位。富含阳离子缺陷的NiFeO@NC电催化剂表现出优异的ORR和OER活性(Δ = 0.68 V)。通过密度泛函理论(DFT)计算研究了电化学反应的机理途径。此外,使用NiFeO@NC催化剂的可充电锌空气电池(RZAB)展现出187 mW cm的峰值功率密度和出色的长期循环稳定性。使用NiFeO@NC催化剂的柔性固态锌空气电池表现出66 mW cm的功率密度。所提出的结构设计策略允许合理设计附着在超薄氮掺杂石墨碳片上的富含阳离子缺陷的镍铁尖晶石铁氧体的电子离域,以提高活性位点的可用性并促进质量和电子传输。