Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, Maryland.
Curr Protoc Neurosci. 2020 Jun;92(1):e93. doi: 10.1002/cpns.93.
GABAergic interneurons comprise a small but diverse subset of neurons in the mammalian brain that tightly regulate neuronal circuit maturation and information flow and, ultimately, behavior. Because of their centrality in the etiology of numerous neurological disorders, examining the molecular architecture of these neurons under different physiological scenarios has piqued the interest of the broader neuroscience community. The last few years have seen an explosion in next-generation sequencing (NGS) approaches aimed at identifying genetic and state-dependent subtypes in neuronal diversity. Although several approaches are employed to address neuronal molecular diversity, ribosomal tagging has emerged at the forefront of identifying the translatomes of neuronal subtypes. This approach primarily relies on Cre recombinase-driven expression of hemagglutinin A (HA)-tagged RiboTag mice exclusively in the neuronal subtype of interest. This allows the immunoprecipitation of cell-type-specific, ribosome-engaged mRNA, expressed both in the soma and the neuronal processes, for targeted quantitative real-time PCR (qRT-PCR) or high-throughput RNA sequencing analyses. Here we detail the typical technical caveats associated with successful application of the RiboTag technique for analyzing GABAergic interneurons, and in theory other sparse cell types, in the central nervous system. Published 2020. U.S. Government. Basic Protocol 1: Breeding mice to obtain RiboTag homozygosity Support Protocol 1: Detection of ectopic Cre recombinase expression Basic Protocol 2: The RiboTag assay Support Protocol 2: Real-time quantitative PCR (qRT-PCR) assay of RiboTag-derived cell-type-specific RNA Support Protocol 3: Construction of cell-type-specific RNA-seq library Support Protocol 4: Secondary analyses of RiboTag-derived RNA-seq dataset.
GABA 能中间神经元构成了哺乳动物大脑中神经元的一个小但多样化的子集,它们紧密调节神经元回路的成熟和信息流,并最终调节行为。由于它们在许多神经疾病的病因中的核心地位,检查这些神经元在不同生理情况下的分子结构引起了更广泛的神经科学界的兴趣。在过去的几年中,出现了许多旨在鉴定神经元多样性中的遗传和状态依赖性亚型的下一代测序 (NGS) 方法。尽管有几种方法可用于解决神经元分子多样性问题,但核糖体标记已成为鉴定神经元亚型翻译组的前沿方法。该方法主要依赖于 Cre 重组酶驱动的血影蛋白 A (HA) 标记的 RiboTag 小鼠在感兴趣的神经元亚型中的特异性表达。这允许免疫沉淀细胞类型特异性、与核糖体结合的 mRNA,这些 mRNA 在体和神经元过程中均有表达,用于靶向定量实时 PCR (qRT-PCR) 或高通量 RNA 测序分析。在这里,我们详细介绍了成功应用 RiboTag 技术分析中枢神经系统中 GABA 能中间神经元以及理论上其他稀疏细胞类型的典型技术注意事项。出版 2020.美国政府。基本方案 1:繁殖获得 RiboTag 纯合子的小鼠支持方案 1:检测异位 Cre 重组酶表达基本方案 2:RiboTag 测定支持方案 2:RiboTag 衍生的细胞类型特异性 RNA 的实时定量 PCR (qRT-PCR) 测定支持方案 3:细胞类型特异性 RNA-seq 文库的构建支持方案 4:RiboTag 衍生的 RNA-seq 数据集的二次分析。