Biozentrum, University of Basel, Basel, Switzerland.
Center for Scientific Computing (sciCORE), University of Basel, Basel, Switzerland.
Nat Neurosci. 2019 Oct;22(10):1709-1717. doi: 10.1038/s41593-019-0465-5. Epub 2019 Aug 26.
Nervous system function relies on complex assemblies of distinct neuronal cell types that have unique anatomical and functional properties instructed by molecular programs. Alternative splicing is a key mechanism for the expansion of molecular repertoires, and protein splice isoforms shape neuronal cell surface recognition and function. However, the logic of how alternative splicing programs are arrayed across neuronal cells types is poorly understood. We systematically mapped ribosome-associated transcript isoforms in genetically defined neuron types of the mouse forebrain. Our dataset provides an extensive resource of transcript diversity across major neuron classes. We find that neuronal transcript isoform profiles reliably distinguish even closely related classes of pyramidal cells and inhibitory interneurons in the mouse hippocampus and neocortex. These highly specific alternative splicing programs selectively control synaptic proteins and intrinsic neuronal properties. Thus, transcript diversification via alternative splicing is a central mechanism for the functional specification of neuronal cell types and circuits.
神经系统的功能依赖于不同神经元细胞类型的复杂组合,这些细胞类型具有由分子程序指导的独特的解剖和功能特性。选择性剪接是扩大分子谱的关键机制,蛋白质剪接异构体塑造神经元细胞表面识别和功能。然而,不同神经元细胞类型中选择性剪接程序的排列逻辑尚不清楚。我们系统地绘制了小鼠前脑基因定义神经元类型的核糖体相关转录本异构体。我们的数据集提供了跨越主要神经元类别的转录本多样性的广泛资源。我们发现,神经元转录本异构体谱能够可靠地区分即使是在海马体和新皮层中密切相关的锥体神经元和抑制性中间神经元类。这些高度特异性的选择性剪接程序选择性地控制突触蛋白和内在神经元特性。因此,通过选择性剪接进行转录本多样化是神经元细胞类型和回路功能特化的核心机制。