Suppr超能文献

在高度混响环境中进行声源定位的学习:在水池中对海豚哨声样声音进行机器学习跟踪。

Learning to localize sounds in a highly reverberant environment: Machine-learning tracking of dolphin whistle-like sounds in a pool.

机构信息

Laboratory of Integrative Neuroscience, Center for Studies in Physics and Biology, The Rockefeller University, New York, NY, United States of America.

Department of Psychology, Hunter College, City University of New York, New York, NY, United States of America.

出版信息

PLoS One. 2020 Jun 25;15(6):e0235155. doi: 10.1371/journal.pone.0235155. eCollection 2020.

Abstract

Tracking the origin of propagating wave signals in an environment with complex reflective surfaces is, in its full generality, a nearly intractable problem which has engendered multiple domain-specific literatures. We posit that, if the environment and sensor geometries are fixed, machine learning algorithms can "learn" the acoustical geometry of the environment and accurately track signal origin. In this paper, we propose the first machine-learning-based approach to identifying the source locations of semi-stationary, tonal, dolphin-whistle-like sounds in a highly reverberant space, specifically a half-cylindrical dolphin pool. Our algorithm works by supplying a learning network with an overabundance of location "clues", which are then selected under supervised training for their ability to discriminate source location in this particular environment. More specifically, we deliver estimated time-difference-of-arrivals (TDOA's) and normalized cross-correlation values computed from pairs of hydrophone signals to a random forest model for high-feature-volume classification and feature selection, and subsequently deliver the selected features into linear discriminant analysis, linear and quadratic Support Vector Machine (SVM), and Gaussian process models. Based on data from 14 sound source locations and 16 hydrophones, our classification models yielded perfect accuracy at predicting novel sound source locations. Our regression models yielded better accuracy than the established Steered-Response Power (SRP) method when all training data were used, and comparable accuracy along the pool surface when deprived of training data at testing sites; our methods additionally boast improved computation time and the potential for superior localization accuracy in all dimensions with more training data. Because of the generality of our method we argue it may be useful in a much wider variety of contexts.

摘要

在具有复杂反射表面的环境中跟踪传播波信号的起源,在其完全一般性的情况下,是一个几乎无法解决的问题,它产生了多个特定领域的文献。我们假设,如果环境和传感器几何形状固定,机器学习算法可以“学习”环境的声学几何形状,并准确跟踪信号源。在本文中,我们提出了第一个基于机器学习的方法,用于识别高度混响空间(具体为半圆形海豚池)中半稳定、音调、海豚哨声样声音的源位置。我们的算法通过向学习网络提供大量位置“线索”来工作,然后在监督训练下选择这些线索,以衡量其在特定环境中区分源位置的能力。更具体地说,我们向随机森林模型提供估计的到达时间差(TDOA)和从两对水听器信号计算的归一化互相关值,用于高特征量分类和特征选择,然后将选定的特征输入线性判别分析、线性和二次支持向量机(SVM)和高斯过程模型。基于来自 14 个声源位置和 16 个水听器的数据,我们的分类模型在预测新声源位置时达到了完美的准确性。我们的回归模型在使用所有训练数据时比既定的 Steered-Response Power (SRP) 方法具有更高的准确性,并且在测试站点缺少训练数据时沿着池表面具有可比的准确性;我们的方法还具有改进的计算时间和在所有维度上具有更高的定位精度的潜力,以及更多的训练数据。由于我们的方法具有通用性,我们认为它可能在更广泛的背景下有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7fca/7316258/9e44f038de89/pone.0235155.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验