Suppr超能文献

基于水热法在透明塑料基板上生长的高性能钴和镍共掺杂氧化锌纳米棒的紫外光探测。

Ultraviolet Photodetection Based on High-Performance Co-Plus-Ni Doped ZnO Nanorods Grown by Hydrothermal Method on Transparent Plastic Substrate.

作者信息

Ajmal Hafiz Muhammad Salman, Khan Fasihullah, Nam Kiyun, Kim Hae Young, Kim Sam Dong

机构信息

Division of Electronics and Electrical Engineering, Dongguk University, Seoul 100-715, Korea.

出版信息

Nanomaterials (Basel). 2020 Jun 23;10(6):1225. doi: 10.3390/nano10061225.

Abstract

A growth scheme at a low processing temperature for high crystalline-quality of ZnO nanostructures can be a prime stepping stone for the future of various optoelectronic devices manufactured on transparent plastic substrates. In this study, ZnO nanorods (NRs) grown by the hydrothermal method at 150 °C through doping of transition metals (TMs), such as Co, Ni, or Co-plus-Ni, on polyethylene terephthalate substrates were investigated by various surface analysis methods. The TM dopants in ZnO NRs suppressed the density of various native defect-states as revealed by our photoluminescence and X-ray photoelectron spectroscopy analysis. Further investigation also showed the doping into ZnO NRs brought about a clear improvement in carrier mobility from 0.81 to 3.95 cm/V-s as well as significant recovery in stoichiometric contents of oxygen. Ultra-violet photodetectors fabricated with Co-plus-Ni codoped NRs grown on an interdigitated electrode structure exhibited a high spectral response of ~137 A/W, on/off current ratio of ~135, and an improvement in transient response speed with rise-up and fall-down times of ~2.2 and ~3.1 s, respectively.

摘要

一种用于生长具有高晶体质量的ZnO纳米结构的低温处理生长方案,可能是未来在透明塑料基板上制造各种光电器件的重要基石。在本研究中,通过各种表面分析方法,对在聚对苯二甲酸乙二酯基板上,通过水热法在150°C下掺杂过渡金属(TMs)(如Co、Ni或Co加Ni)生长的ZnO纳米棒(NRs)进行了研究。光致发光和X射线光电子能谱分析表明,ZnO NRs中的TM掺杂剂抑制了各种本征缺陷态的密度。进一步研究还表明,掺杂到ZnO NRs中使载流子迁移率从0.81显著提高到3.95 cm/V-s,同时氧的化学计量含量也有显著恢复。在叉指电极结构上生长的Co加Ni共掺杂NRs制成的紫外光电探测器,表现出约137 A/W的高光谱响应、约135的开/关电流比,以及瞬态响应速度的改善,上升和下降时间分别约为2.2和3.1 s。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d3e5/7353085/c4d384b633ef/nanomaterials-10-01225-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验