Department of Biostatistics, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran.
Department of Medicine, University of Alberta, Edmonton, Canada.
Comput Math Methods Med. 2020 May 29;2020:7827434. doi: 10.1155/2020/7827434. eCollection 2020.
This study presents a novel methodology to investigate the nonparametric estimation of a survival probability under random censoring time using the ranked observations from a Partially Rank-Ordered Set (PROS) sampling design and employs it in a hematological disorder study. The PROS sampling design has numerous applications in medicine, social sciences and ecology where the exact measurement of the sampling units is costly; however, sampling units can be ordered by using judgment ranking or available concomitant information. The general estimation methods are not directly applicable to the case where samples are from rank-based sampling designs, because the sampling units do not meet the identically distributed assumption. We derive asymptotic distribution of a Kaplan-Meier (KM) estimator under PROS sampling design. Finally, we compare the performance of the suggested estimators via several simulation studies and apply the proposed methods to a real data set. The results show that the proposed estimator under rank-based sampling designs outperforms its counterpart in a simple random sample (SRS).
本研究提出了一种新的方法,用于使用部分有序集(PROS)抽样设计中的排序观测值来研究随机删失时间下生存概率的非参数估计,并将其应用于血液学疾病研究中。PROS 抽样设计在医学、社会科学和生态学中有许多应用,在这些领域中,精确测量抽样单位的成本很高;但是,可以使用判断排名或可用伴随信息对抽样单位进行排序。一般的估计方法不适用于基于排名的抽样设计的情况,因为抽样单位不符合同分布假设。我们推导出了 PROS 抽样设计下 Kaplan-Meier(KM)估计量的渐近分布。最后,我们通过几项模拟研究比较了建议的估计量的性能,并将提出的方法应用于实际数据集。结果表明,基于排名的抽样设计下的建议估计量优于简单随机抽样(SRS)中的对应估计量。