Díaz Iván, Colantuoni Elizabeth, Hanley Daniel F, Rosenblum Michael
Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA.
Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
Lifetime Data Anal. 2019 Jul;25(3):439-468. doi: 10.1007/s10985-018-9428-5. Epub 2018 Feb 28.
We present a new estimator of the restricted mean survival time in randomized trials where there is right censoring that may depend on treatment and baseline variables. The proposed estimator leverages prognostic baseline variables to obtain equal or better asymptotic precision compared to traditional estimators. Under regularity conditions and random censoring within strata of treatment and baseline variables, the proposed estimator has the following features: (i) it is interpretable under violations of the proportional hazards assumption; (ii) it is consistent and at least as precise as the Kaplan-Meier and inverse probability weighted estimators, under identifiability conditions; (iii) it remains consistent under violations of independent censoring (unlike the Kaplan-Meier estimator) when either the censoring or survival distributions, conditional on covariates, are estimated consistently; and (iv) it achieves the nonparametric efficiency bound when both of these distributions are consistently estimated. We illustrate the performance of our method using simulations based on resampling data from a completed, phase 3 randomized clinical trial of a new surgical treatment for stroke; the proposed estimator achieves a 12% gain in relative efficiency compared to the Kaplan-Meier estimator. The proposed estimator has potential advantages over existing approaches for randomized trials with time-to-event outcomes, since existing methods either rely on model assumptions that are untenable in many applications, or lack some of the efficiency and consistency properties (i)-(iv). We focus on estimation of the restricted mean survival time, but our methods may be adapted to estimate any treatment effect measure defined as a smooth contrast between the survival curves for each study arm. We provide R code to implement the estimator.
我们提出了一种用于随机试验中受限平均生存时间的新估计量,该试验存在可能依赖于治疗和基线变量的右删失情况。与传统估计量相比,所提出的估计量利用预后基线变量来获得同等或更高的渐近精度。在常规条件以及治疗和基线变量分层内的随机删失情况下,所提出的估计量具有以下特点:(i)在违反比例风险假设的情况下仍可解释;(ii)在可识别性条件下,它是一致的,并且至少与Kaplan-Meier估计量和逆概率加权估计量一样精确;(iii)当基于协变量对删失或生存分布进行一致估计时,在违反独立删失(与Kaplan-Meier估计量不同)的情况下它仍然是一致的;(iv)当这两种分布都被一致估计时,它达到非参数效率界。我们使用基于一项已完成的针对中风的新型手术治疗的3期随机临床试验的重采样数据进行模拟,来说明我们方法的性能;与Kaplan-Meier估计量相比,所提出的估计量在相对效率上提高了12%。对于具有事件发生时间结局的随机试验,所提出的估计量相对于现有方法具有潜在优势,因为现有方法要么依赖于在许多应用中站不住脚的模型假设,要么缺乏一些效率和一致性属性(i) - (iv)。我们专注于受限平均生存时间的估计,但我们的方法可以适用于估计任何定义为各研究组生存曲线之间平滑对比的治疗效果度量。我们提供了用于实现该估计量的R代码。