Suppr超能文献

比较单指数、双指数和拉伸指数扩散加权磁共振成像在兔模型中非酒精性脂肪性肝病中的分层作用。

Comparing mono-exponential, bi-exponential, and stretched-exponential diffusion-weighted MR imaging for stratifying non-alcoholic fatty liver disease in a rabbit model.

机构信息

Department of Radiology, Northern Jiangsu People's Hospital, Clinical Medical School of Yangzhou University, No. 98 Nantong West Road, Yangzhou, 225001, People's Republic of China.

Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, Guangzhou, 510120, People's Republic of China.

出版信息

Eur Radiol. 2020 Nov;30(11):6022-6032. doi: 10.1007/s00330-020-07005-2. Epub 2020 Jun 26.

Abstract

OBJECTIVES

To compare diffusion parameters obtained from mono-exponential, bi-exponential, and stretched-exponential diffusion-weighted imaging (DWI) in stratifying non-alcoholic fatty liver disease (NAFLD).

METHODS

Thirty-two New Zealand rabbits were fed a high-fat/cholesterol or standard diet to obtain different stages of NAFLD before 12 b-values (0-800 s/mm) DWI. The apparent diffusion coefficient (ADC) from the mono-exponential model; pure water diffusion (D), pseudo-diffusion (D*), and perfusion fraction (f) from bi-exponential DWI; and distributed diffusion coefficient (DDC) and water molecular diffusion heterogeneity index (α) from stretched-exponential DWI were calculated for hepatic parenchyma. The goodness of fit of the three models was compared. NAFLD severity was pathologically graded as normal, simple steatosis, borderline, and non-alcoholic steatohepatitis (NASH). Spearman rank correlation analysis and receiver operating characteristic curves were used to assess NAFLD severity.

RESULTS

Upon comparison, the goodness of fit chi-square from stretched-exponential fitting (0.077 ± 0.012) was significantly lower than that for the bi-exponential (0.110 ± 0.090) and mono-exponential (0.181 ± 0.131) models (p < 0.05). Seven normal, 8 simple steatosis, 6 borderline, and 11 NASH livers were pathologically confirmed from 32 rabbits. Both α and D increased with increasing NAFLD severity (r = 0.811 and 0.373, respectively; p < 0.05). ADC, f, and DDC decreased as NAFLD severity increased (r = - 0.529, - 0.717, and - 0.541, respectively; p < 0.05). Both α (area under the curve [AUC] = 0.952) and f (AUC = 0.931) had significantly greater AUCs than ADC (AUC = 0.727) in the differentiation of NASH from borderline or less severe groups (p < 0.05).

CONCLUSIONS

Stretched-exponential DWI with higher fitting efficiency performed, as well as bi-exponential DWI, better than mono-exponential DWI in the stratification of NAFLD severity.

KEY POINTS

• Stretched-exponential diffusion model fitting was more reliable than the bi-exponential and mono-exponential diffusion models (p = 0.039 and p < 0.001, respectively). • As NAFLD severity increased, the diffusion heterogeneity index (α) increased, while the perfusion fraction (f) decreased (r = 0.811, - 0.717, p < 0.05). • Both α and f showed superior NASH diagnostic performance (AUC = 0.952, 0.931) compared with ADC (AUC = 0.727, p < 0.05).

摘要

目的

比较单指数、双指数和拉伸指数扩散加权成像(DWI)在非酒精性脂肪性肝病(NAFLD)分层中的扩散参数。

方法

32 只新西兰兔分别给予高脂/胆固醇饮食或标准饮食,以在 12 个 b 值(0-800 s/mm)DWI 前获得不同阶段的 NAFLD。从单指数模型中计算表观扩散系数(ADC);从双指数 DWI 中计算纯水扩散(D)、伪扩散(D*)和灌注分数(f);从拉伸指数 DWI 中计算分布扩散系数(DDC)和水分子扩散异质性指数(α)。比较三种模型的拟合优度。NAFLD 严重程度通过病理学分级为正常、单纯性脂肪变性、边界性和非酒精性脂肪性肝炎(NASH)。采用 Spearman 秩相关分析和受试者工作特征曲线评估 NAFLD 严重程度。

结果

与双指数(0.110±0.090)和单指数(0.181±0.131)模型相比,拉伸指数拟合的卡方拟合优度(0.077±0.012)显著降低(p<0.05)。32 只兔子中,7 只正常、8 只单纯性脂肪变性、6 只边界性和 11 只 NASH 肝脏通过病理学证实。随着 NAFLD 严重程度的增加,α 和 D 均增加(r=0.811 和 0.373,p<0.05)。ADC、f 和 DDC 随着 NAFLD 严重程度的增加而降低(r=-0.529、-0.717 和-0.541,p<0.05)。α(曲线下面积[AUC]=0.952)和 f(AUC=0.931)的 AUC 明显大于 ADC(AUC=0.727),用于区分 NASH 与边界性或更严重的组(p<0.05)。

结论

在 NAFLD 严重程度分层中,与双指数 DWI 相比,拉伸指数 DWI 具有更高的拟合效率,与单指数 DWI 相比表现更好。

关键点

  • 拉伸指数扩散模型拟合比双指数和单指数扩散模型更可靠(p=0.039 和 p<0.001)。

  • 随着 NAFLD 严重程度的增加,扩散异质性指数(α)增加,而灌注分数(f)降低(r=0.811,-0.717,p<0.05)。

  • α 和 f 与 ADC(AUC=0.727,p<0.05)相比,具有更好的 NASH 诊断性能(AUC=0.952,0.931)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验