Suppr超能文献

用于纳米级原子的修正 Lennard-Jones 势

Modified Lennard-Jones potentials for nanoscale atoms.

作者信息

Sikorska Celina, Gaston Nicola

机构信息

Department of Physics, The MacDiarmid Institute for Advanced Materials and Nanotechnology, The University of Auckland, Auckland, New Zealand.

出版信息

J Comput Chem. 2020 Aug 15;41(22):1985-2000. doi: 10.1002/jcc.26368. Epub 2020 Jun 27.

Abstract

A classical 6-12 Lennard-Jones (LJ) equation has been widely used to model materials and is the potential of choice in studies when the focus is on fundamental issues. Here we report a systematic study comparing the pair interaction potentials within solid-state materials (i.e., [Co Se (PEt ) ][C ] , [Cr Te (PEt ) ][C ] , [Ni Te (PEt ) ][C ]) using density functional theory (DFT) calculations and LJ parametrization. Both classical (6-12 LJ) and modified LJ (mLJ) models were developed. In the mLJ approach, the exponents 6 and 12 are replaced by different integer number n and 2n, respectively, and an additional parameter (α) is introduced to describe intermolecular distance shift arising within the geometric centers' approach (instead of the shortest interatomic distance between particles). A general LJ approach reexamination reveals that in the case of nanoatoms, the attractive term decays with distance as the inverse fourth power, and the dominating at short distances repulsive term decays as the inverse eighth power. The modification of the LJ equation is even more prominent for interaction profiles, where intermolecular distance corresponds to separation between geometric centers of particles. In this approach, the attractive term decays with distance as the inverse 12th power, while the repulsive term decays rapidly (as the inverse 24th power). Thus, the mLJ models (e.g., 4-8 LJ) rather than the 6-12 classical ones seem to be a better choice for the description of binary interactions of nanoatoms. The developed mLJ models and electronic structure characteristics give an insight into the explanation of the unique physicochemical properties of superatomic-based solid-state materials.

摘要

经典的6 - 12 Lennard - Jones(LJ)方程已被广泛用于材料建模,并且在关注基本问题的研究中是首选的势能模型。在此,我们报告一项系统研究,该研究使用密度泛函理论(DFT)计算和LJ参数化方法,比较固态材料(即[Co Se (PEt ) ][C ] 、[Cr Te (PEt ) ][C ] 、[Ni Te (PEt ) ][C ])中的对相互作用势能。我们开发了经典的(6 - 12 LJ)和修正的LJ(mLJ)模型。在mLJ方法中,指数6和12分别被不同的整数n和2n取代,并且引入了一个额外的参数(α)来描述在几何中心靠近过程中产生的分子间距离偏移(而不是粒子间最短原子间距离)。对一般LJ方法的重新审视表明,在纳米原子的情况下,吸引项随距离以四次方反比衰减,而在短距离占主导的排斥项以八次方反比衰减。对于相互作用曲线,LJ方程的修正更为显著,其中分子间距离对应于粒子几何中心之间的间距。在这种方法中,吸引项随距离以十二次方反比衰减,而排斥项迅速衰减(以二十四次方反比)。因此,mLJ模型(例如4 - 8 LJ)而非6 - 12经典模型似乎是描述纳米原子二元相互作用的更好选择。所开发的mLJ模型和电子结构特征有助于深入解释基于超原子的固态材料独特的物理化学性质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验