Suppr超能文献

皮肤镜下反推法显著提高了人眼阅读者对恶性雀斑样痣诊断的准确性。

The dermoscopic inverse approach significantly improves the accuracy of human readers for lentigo maligna diagnosis.

机构信息

First Department of Dermatology, Aristotle University, Thessaloniki, Greece.

First Department of Dermatology, Aristotle University, Thessaloniki, Greece.

出版信息

J Am Acad Dermatol. 2021 Feb;84(2):381-389. doi: 10.1016/j.jaad.2020.06.085. Epub 2020 Jun 24.

Abstract

BACKGROUND

A recently introduced dermoscopic method for the diagnosis of early lentigo maligna (LM) is based on the absence of prevalent patterns of pigmented actinic keratosis and solar lentigo/flat seborrheic keratosis. We term this the inverse approach.

OBJECTIVE

To determine whether training on the inverse approach increases the diagnostic accuracy of readers compared to classic pattern analysis.

METHODS

We used clinical and dermoscopic images of histopathologically diagnosed LMs, pigmented actinic keratoses, and solar lentigo/flat seborrheic keratoses. Participants in a dermoscopy masterclass classified the lesions at baseline and after training on pattern analysis and the inverse approach. We compared their diagnostic performance among the 3 timepoints and to that of a trained convolutional neural network.

RESULTS

The mean sensitivity for LM without training was 51.5%; after training on pattern analysis, it increased to 56.7%; and after learning the inverse approach, it increased to 83.6%. The mean proportions of correct answers at the 3 timepoints were 62.1%, 65.5, and 78.5%. The percentages of readers outperforming the convolutional neural network were 6.4%, 15.4%, and 53.9%, respectively.

LIMITATIONS

The experimental setting and the inclusion of histopathologically diagnosed lesions only.

CONCLUSIONS

The inverse approach, added to the classic pattern analysis, significantly improves the sensitivity of human readers for early LM diagnosis.

摘要

背景

最近引入的一种用于早期恶性黑素瘤(LM)诊断的皮肤镜方法基于不存在常见的光化性角化病和日光性雀斑/扁平脂溢性角化病的色素模式。我们将其称为反方法。

目的

确定与经典模式分析相比,对反方法的培训是否会提高读者的诊断准确性。

方法

我们使用组织病理学诊断为 LM、色素性光化性角化病和日光性雀斑/扁平脂溢性角化病的临床和皮肤镜图像。皮肤镜大师班的参与者在基线时以及在经典模式分析和反方法培训后对病变进行分类。我们比较了他们在这 3 个时间点的诊断性能以及与训练有素的卷积神经网络的诊断性能。

结果

无培训时 LM 的平均敏感性为 51.5%;在经典模式分析培训后,敏感性增加至 56.7%;在学习反方法后,敏感性增加至 83.6%。这 3 个时间点的正确答案比例分别为 62.1%、65.5%和 78.5%。在这 3 个时间点,读者的比例分别为 6.4%、15.4%和 53.9%,超过了卷积神经网络。

局限性

实验设置和仅包括组织病理学诊断的病变。

结论

反方法,与经典模式分析相结合,可显著提高人类读者对早期 LM 诊断的敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验