Suppr超能文献

开发和评估一个骨关节炎风险模型,以整合到初级保健医疗信息技术中。

Development and evaluation of an osteoarthritis risk model for integration into primary care health information technology.

机构信息

Graduate Program in Epidemiology & Biostatistics, Western University, 1151 Richmond Street, London, Ontario, N6A 5C1, Canada.

Department of Family Medicine, Department of Epidemiology & Biostatistics, Schulich Interfaculty Program in Public Health, Western University, 1151 Richmond Street, London, Ontario, N6A 3K7, Canada.

出版信息

Int J Med Inform. 2020 Sep;141:104160. doi: 10.1016/j.ijmedinf.2020.104160. Epub 2020 May 1.

Abstract

BACKGROUND

We developed and evaluated a prognostic prediction model that estimates osteoarthritis risk for use by patients and practitioners that is designed to be appropriate for integration into primary care health information technology systems. Osteoarthritis, a joint disorder characterized by pain and stiffness, causes significant morbidity among older Canadians. Because our prognostic prediction model for osteoarthritis risk uses data that are readily available in primary care settings, it supports targeting of interventions delivered as part of clinical practice that are aimed at risk reduction.

METHODS

We used the CPCSSN (Canadian Primary Sentinel Surveillance Network) database, which contains aggregated electronic health information from a cohort of primary care practices, to develop and evaluate a prognostic prediction model to estimate 5-year osteoarthritis risk, addressing contextual challenges of data availability and missingness. We constructed a retrospective cohort of 383,117 eligible primary care patients who were included in the cohort if they had an encounter with their primary care practitioner between 1 January 2009 and 31 December 2010. Patients were excluded if they had a diagnosis of osteoarthritis prior to their first visit in this time period. Incident cases of osteoarthritis were observed. The model was constructed to predict incident osteoarthritis based on age, sex, BMI, previous leg injury, and osteoporosis. Evaluation of the model used internal 10-fold cross-validation; we argue that internal validation is particularly appropriate for a model that is to be integrated into the same context from which the data were derived.

RESULTS

The resulting prediction model for 5-year risk of osteoarthritis diagnosis demonstrated state-of-the-art discrimination (estimated AUROC 0.84) and good calibration (assessed visually.) The model relies only on information that is readily available in Canadian primary care settings, and hence is appropriate for integration into Canadian primary care health information technology.

CONCLUSIONS

If the contextual challenges arising when using primary care electronic medical record data are appropriately addressed, highly discriminative models for osteoarthritis risk may be constructed using only data commonly available in primary care. Because the models are constructed from data in the same setting where the model is to be applied, internal validation provides strong evidence that the resulting model will perform well in its intended application.

摘要

背景

我们开发并评估了一种预测模型,用于估计患者和医生的骨关节炎风险,旨在适用于整合到初级保健健康信息技术系统中。骨关节炎是一种以疼痛和僵硬为特征的关节疾病,在加拿大老年人中造成了很大的发病率。由于我们的骨关节炎风险预测模型使用的是初级保健环境中易于获得的数据,因此它支持针对作为临床实践一部分的干预措施进行目标定位,这些干预措施旨在降低风险。

方法

我们使用 CPCSSN(加拿大初级监测网络)数据库,该数据库包含来自一组初级保健实践的汇总电子健康信息,来开发和评估一种预测模型,以估计 5 年的骨关节炎风险,解决数据可用性和缺失的背景挑战。我们构建了一个回顾性队列,其中包括 383117 名符合条件的初级保健患者,如果他们在 2009 年 1 月 1 日至 2010 年 12 月 31 日期间与他们的初级保健医生有过一次就诊,则将他们纳入该队列。如果他们在这段时间内的首次就诊前被诊断为骨关节炎,则将其排除在外。观察到骨关节炎的新发病例。该模型是基于年龄、性别、BMI、以前的腿部损伤和骨质疏松症来预测新发病例的骨关节炎。该模型使用内部 10 折交叉验证进行评估;我们认为,对于要整合到从中提取数据的同一环境中的模型,内部验证特别合适。

结果

用于诊断 5 年骨关节炎风险的预测模型表现出了最先进的区分能力(估计的 AUROC 为 0.84)和良好的校准(通过视觉评估)。该模型仅依赖于在加拿大初级保健环境中易于获得的信息,因此适合整合到加拿大初级保健健康信息技术中。

结论

如果在使用初级保健电子病历数据时出现的背景挑战得到适当解决,那么仅使用初级保健中常见的数据就可以构建出用于骨关节炎风险的高度区分模型。由于模型是从模型将要应用的相同环境中的数据构建的,内部验证提供了强有力的证据表明,该模型将在其预期应用中表现良好。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验