Suppr超能文献

开发一种预后预测模型来估计多种慢性病的风险:使用加拿大初级保健电子病历数据构建基于 Copula 的模型。

Development of a prognostic prediction model to estimate the risk of multiple chronic diseases: constructing a copula-based model using Canadian primary care electronic medical record data.

机构信息

Department of Epidemiology & Biostatistics, Western University, 1151 Richmond Street London, Ontario, Canada, N6A 3K7.

Department of Computer Science, Department of Epidemiology & Biostatistics, Western University, 1151 Richmond Street London, Ontario, Canada, N6A 3K7.

出版信息

Int J Popul Data Sci. 2021 Jan 19;6(1):1395. doi: 10.23889/ijpds.v5i1.1395.

Abstract

INTRODUCTION

The ability to estimate risk of multimorbidity will provide valuable information to patients and primary care practitioners in their preventative efforts. Current methods for prognostic prediction modelling are insufficient for the estimation of risk for multiple outcomes, as they do not properly capture the dependence that exists between outcomes.

OBJECTIVES

We developed a multivariate prognostic prediction model for the 5-year risk of diabetes, hypertension, and osteoarthritis that quantifies and accounts for the dependence between each disease using a copula-based model.

METHODS

We used data from the Canadian Primary Care Sentinel Surveillance Network (CPCSSN) from 2009 onwards, a collection of electronic medical records submitted by participating primary care practitioners across Canada. We identified patients 18 years and older without all three outcome diseases and observed any incident diabetes, osteoarthritis, or hypertension within 5-years, resulting in a large retrospective cohort for model development and internal validation (n=425,228). First, we quantified the dependence between outcomes using unadjusted and adjusted coefficients. We then estimated a copula-based model to quantify the non-linear dependence between outcomes that can be used to derive risk estimates for each outcome, accounting for the observed dependence. Copula-based models are defined by univariate models for each outcome and a dependence function, specified by the parameter . Logistic regression was used for the univariate models and the Frank copula was selected as the dependence function.

RESULTS

All outcome pairs demonstrated statistically significant dependence that was reduced after adjusting for covariates. The copula-based model yielded statistically significant parameters in agreement with the adjusted and unadjusted coefficients. Our copula-based model can effectively be used to estimate trivariate probabilities.

DISCUSSION

Quantitative estimates of multimorbidity risk inform discussions between patients and their primary care practitioners around prevention in an effort to reduce the incidence of multimorbidity.

摘要

简介

评估多种疾病发病风险的能力将为患者和初级保健医生提供有价值的信息,帮助他们进行预防工作。目前用于预后预测建模的方法对于多个结局的风险预测并不充分,因为它们不能正确捕捉结局之间存在的依存关系。

目的

我们开发了一种基于多元预后预测模型,用于估计糖尿病、高血压和骨关节炎的 5 年发病风险,该模型使用基于 Copula 的模型来量化和解释每种疾病之间的依存关系。

方法

我们使用了 2009 年以来加拿大初级保健监测网络(CPCSSN)的数据,这是一个由加拿大各地参与的初级保健医生提交的电子病历组成的集合。我们确定了没有这三种疾病的 18 岁及以上患者,并观察了 5 年内任何新发生的糖尿病、骨关节炎或高血压,从而建立了一个大型回顾性队列用于模型开发和内部验证(n=425228)。首先,我们使用未调整和调整后的 系数来量化结局之间的依存关系。然后,我们估计了一个基于 Copula 的模型,以量化结局之间的非线性依存关系,从而可以根据观察到的依存关系得出每个结局的风险估计。基于 Copula 的模型由每个结局的单变量模型和依赖函数定义,由参数 确定。单变量模型使用逻辑回归,选择 Frank Copula 作为依赖函数。

结果

所有结局对均显示出具有统计学意义的依存关系,调整协变量后依存关系降低。基于 Copula 的模型产生了统计学上显著的 参数,与调整后的和未调整的 系数一致。我们的基于 Copula 的模型可以有效地用于估计三重概率。

讨论

对多种疾病发病风险的定量评估有助于患者及其初级保健医生就预防问题进行讨论,以减少多种疾病的发病率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bdd/8112224/fa5511c22672/ijpds-06-1395-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验