Suppr超能文献

多领域潜在生物标志物预测近期创伤幸存者创伤后应激障碍严重程度。

Multi-domain potential biomarkers for post-traumatic stress disorder (PTSD) severity in recent trauma survivors.

机构信息

Sagol Brain Institute Tel-Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel-Aviv, Israel.

Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.

出版信息

Transl Psychiatry. 2020 Jun 27;10(1):208. doi: 10.1038/s41398-020-00898-z.

Abstract

Contemporary symptom-based diagnosis of post-traumatic stress disorder (PTSD) largely overlooks related neurobehavioral mechanisms and relies entirely on subjective interpersonal reporting. Previous studies associating biomarkers with PTSD have mostly used symptom-based diagnosis as the main outcome measure, disregarding the wide variability and richness of PTSD phenotypical features. Here, we aimed to computationally derive potential biomarkers that could efficiently differentiate PTSD subtypes among recent trauma survivors. A three-staged semi-unsupervised method ("3C") was used to firstly categorize individuals by current PTSD symptom severity, then derive clusters based on clinical features related to PTSD (e.g. anxiety and depression), and finally to classify participants' cluster membership using objective multi-domain features. A total of 256 features were extracted from psychometrics, cognitive functioning, and both structural and functional MRI data, obtained from 101 adult civilians (age = 34.80 ± 11.95; 51 females) evaluated within 1 month of trauma exposure. The features that best differentiated cluster membership were assessed by importance analysis, classification tree, and ANOVA. Results revealed that entorhinal and rostral anterior cingulate cortices volumes (structural MRI domain), in-task amygdala's functional connectivity with the insula and thalamus (functional MRI domain), executive function and cognitive flexibility (cognitive testing domain) best differentiated between two clusters associated with PTSD severity. Cross-validation established the results' robustness and consistency within this sample. The neural and cognitive potential biomarkers revealed by the 3C analytics offer objective classifiers of post-traumatic morbidity shortly following trauma. They also map onto previously documented neurobehavioral mechanisms associated with PTSD and demonstrate the usefulness of standardized and objective measurements as differentiating clinical sub-classes shortly after trauma.

摘要

当代基于症状的创伤后应激障碍 (PTSD) 诊断在很大程度上忽略了相关的神经行为机制,完全依赖于主观的人际报告。以前将生物标志物与 PTSD 相关联的研究大多将基于症状的诊断作为主要的结果测量,而忽略了 PTSD 表型特征的广泛变异性和丰富性。在这里,我们旨在通过计算方法得出潜在的生物标志物,以有效地区分近期创伤幸存者中的 PTSD 亚型。采用三阶段半无监督方法(“3C”),首先根据当前 PTSD 症状严重程度对个体进行分类,然后根据与 PTSD 相关的临床特征(例如焦虑和抑郁)得出聚类,最后使用客观的多领域特征对参与者的聚类成员进行分类。从心理计量学、认知功能以及结构和功能 MRI 数据中提取了 256 个特征,这些数据来自 101 名成年平民(年龄=34.80±11.95;51 名女性),他们在创伤暴露后 1 个月内进行了评估。通过重要性分析、分类树和 ANOVA 评估了最佳区分聚类成员的特征。结果表明,内嗅皮质和额前扣带皮质体积(结构 MRI 域)、任务中的杏仁核与岛叶和丘脑的功能连接(功能 MRI 域)、执行功能和认知灵活性(认知测试域)最好地区分了与 PTSD 严重程度相关的两个聚类。交叉验证确立了这些结果在该样本中的稳健性和一致性。3C 分析揭示的神经和认知潜在生物标志物为创伤后不久的创伤后发病率提供了客观的分类器。它们还映射到以前记录的与 PTSD 相关的神经行为机制,并证明了标准化和客观测量在创伤后不久区分临床亚类的有用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f8/7320966/8b4ae08fb42f/41398_2020_898_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验