Galatzer-Levy Isaac R, Karstoft Karen-Inge, Statnikov Alexander, Shalev Arieh Y
Department of Psychiatry, NYU School of Medicine, New York, NY, USA.
Department of Psychiatry, NYU School of Medicine, New York, NY, USA; Department of Psychology, University of Southern Denmark, Odense, Denmark.
J Psychiatr Res. 2014 Dec;59:68-76. doi: 10.1016/j.jpsychires.2014.08.017. Epub 2014 Sep 16.
There is broad interest in predicting the clinical course of mental disorders from early, multimodal clinical and biological information. Current computational models, however, constitute a significant barrier to realizing this goal. The early identification of trauma survivors at risk of post-traumatic stress disorder (PTSD) is plausible given the disorder's salient onset and the abundance of putative biological and clinical risk indicators. This work evaluates the ability of Machine Learning (ML) forecasting approaches to identify and integrate a panel of unique predictive characteristics and determine their accuracy in forecasting non-remitting PTSD from information collected within 10 days of a traumatic event. Data on event characteristics, emergency department observations, and early symptoms were collected in 957 trauma survivors, followed for fifteen months. An ML feature selection algorithm identified a set of predictors that rendered all others redundant. Support Vector Machines (SVMs) as well as other ML classification algorithms were used to evaluate the forecasting accuracy of i) ML selected features, ii) all available features without selection, and iii) Acute Stress Disorder (ASD) symptoms alone. SVM also compared the prediction of a) PTSD diagnostic status at 15 months to b) posterior probability of membership in an empirically derived non-remitting PTSD symptom trajectory. Results are expressed as mean Area Under Receiver Operating Characteristics Curve (AUC). The feature selection algorithm identified 16 predictors, present in ≥ 95% cross-validation trials. The accuracy of predicting non-remitting PTSD from that set (AUC = .77) did not differ from predicting from all available information (AUC = .78). Predicting from ASD symptoms was not better then chance (AUC = .60). The prediction of PTSD status was less accurate than that of membership in a non-remitting trajectory (AUC = .71). ML methods may fill a critical gap in forecasting PTSD. The ability to identify and integrate unique risk indicators makes this a promising approach for developing algorithms that infer probabilistic risk of chronic posttraumatic stress psychopathology based on complex sources of biological, psychological, and social information.
利用早期多模式临床和生物学信息预测精神障碍的临床病程备受关注。然而,当前的计算模型对实现这一目标构成了重大障碍。鉴于创伤后应激障碍(PTSD)显著的起病特点以及大量假定的生物学和临床风险指标,早期识别有患PTSD风险的创伤幸存者是可行的。本研究评估了机器学习(ML)预测方法识别和整合一组独特预测特征的能力,并根据创伤事件后10天内收集的信息确定其预测持续性PTSD的准确性。收集了957名创伤幸存者的事件特征、急诊科观察结果和早期症状数据,并对他们进行了15个月的随访。一种ML特征选择算法识别出一组预测因子,使所有其他因子变得多余。支持向量机(SVM)以及其他ML分类算法被用于评估以下方面的预测准确性:i)ML选择的特征;ii)所有未经过选择的可用特征;iii)仅急性应激障碍(ASD)症状。SVM还比较了a)15个月时PTSD诊断状态的预测与b)经验性得出的持续性PTSD症状轨迹中成员身份的后验概率。结果以平均受试者工作特征曲线下面积(AUC)表示。特征选择算法识别出16个预测因子,这些因子出现在≥95%的交叉验证试验中。从该组预测因子预测持续性PTSD的准确性(AUC = 0.77)与从所有可用信息进行预测的准确性(AUC = 0.78)没有差异。从ASD症状进行预测并不比随机猜测更好(AUC = 0.60)。PTSD状态的预测不如持续性轨迹中成员身份的预测准确(AUC = 0.71)。ML方法可能填补PTSD预测方面的关键空白。识别和整合独特风险指标的能力使其成为开发基于生物学、心理学和社会信息复杂来源推断慢性创伤后应激心理病理学概率风险算法的一种有前景的方法。