Jones Alexander M, Zhou Yadi, Held Michael A, Davis Sarah C
Voinovich School of Leadership and Public Affairs, Ohio University, Athens, OH, United States.
Department of Chemistry and Biochemistry, Ohio University, Athens, OH, United States.
Front Plant Sci. 2020 Jun 11;11:654. doi: 10.3389/fpls.2020.00654. eCollection 2020.
L. is a highly productive, drought-tolerant species being investigated as a feedstock for biofuel production. Some spp. yield crop biomass in semi-arid conditions that are comparable to C and C crops grown in areas with high rainfall. This study evaluates the bioethanol yield potential of by (1) examining the relationship between water use efficiency (WUE) and plant carbohydrates, (2) quantifying the carbohydrate and energy content of the plant tissue, and (3) comparing the products of enzymatic hydrolysis to that of other candidate feedstocks ( Greef et Deuter, (L.) Moench, and L.). Results indicate that (1) WUE does not significantly affect soluble and insoluble (i.e., structural) carbohydrate composition per unit mass in ; (2) without pretreatment, biomass had the lowest gross heat of combustion, or higher heating/calorific value, compared to high yielding C crops; and (3) after separation of soluble carbohydrates, cellulosic biomass was most easily hydrolyzed by enzymes with greater sugar yield per unit mass compared to the other biomass feedstocks. These results indicate that can produce substantial yields of soluble carbohydrates with minimal water inputs required for cultivation, and fiber portions of the crop can be readily deconstructed by cellulolytic enzymes for subsequent biochemical fermentation.
L.是一种高产、耐旱的物种,正作为生物燃料生产的原料进行研究。一些 spp. 在半干旱条件下的作物生物量产量与在高降雨地区种植的C和C作物相当。本研究通过以下方式评估 的生物乙醇产量潜力:(1) 研究水分利用效率 (WUE) 与植物碳水化合物之间的关系;(2) 量化植物组织的碳水化合物和能量含量;(3) 将酶解产物与其他候选原料(Greef和Deuter,(L.) Moench,以及 L.)的产物进行比较。结果表明:(1) WUE对 中单位质量的可溶性和不溶性(即结构性)碳水化合物组成没有显著影响;(2) 未经预处理时,与高产C作物相比, 生物量的燃烧总热或更高的加热/热值最低;(3) 分离可溶性碳水化合物后, 纤维素生物质最容易被酶水解,与其他生物质原料相比,单位质量的糖产量更高。这些结果表明, 可以在极少的种植所需水分投入下产生大量的可溶性碳水化合物,并且作物的纤维部分可以很容易地被纤维素分解酶解构,用于后续的生化发酵。