Suppr超能文献

医学教育中学习分析实施的下一步:国际医学教育者队列的共识。

Next Steps in the Implementation of Learning Analytics in Medical Education: Consensus From an International Cohort of Medical Educators.

出版信息

J Grad Med Educ. 2020 Jun;12(3):303-311. doi: 10.4300/JGME-D-19-00493.1.

Abstract

BACKGROUND

With the implementation of competency-based assessment systems, education programs are collecting increasing amounts of data about medical learners. However, learning analytics are rarely employed to use this data to improve medical education.

OBJECTIVE

We identified outstanding issues that are limiting the effective adoption of learning analytics in medical education.

METHODS

Participants at an international summit on learning analytics in medical education generated key questions that need to be addressed to move the field forward. Small groups formulated questions related to data stewardship, learner perspectives, and program perspectives. Three investigators conducted an inductive qualitative content analysis on the participant questions, coding the data by consensus and organizing it into themes. One investigator used the themes to formulate representative questions that were refined by the other investigators.

RESULTS

Sixty-seven participants from 6 countries submitted 195 questions. From them, we identified 3 major themes: implementation challenges (related to changing current practices to collect data and utilize learning analytics); data (related to data collection, security, governance, access, and analysis); and outcomes (related to the use of learning analytics for assessing learners and faculty as well as evaluating programs and systems). We present the representative questions and their implications.

CONCLUSIONS

Our analysis highlights themes regarding implementation, data management, and outcomes related to the use of learning analytics in medical education. These results can be used as a framework to guide stakeholder education, research, and policy development that delineates the benefits and challenges of using learning analytics in medical education.

摘要

背景

随着基于能力的评估系统的实施,教育项目正在收集越来越多关于医学学习者的数据。然而,学习分析在医学教育中很少被用来利用这些数据来改进医学教育。

目的

我们确定了限制学习分析在医学教育中有效采用的突出问题。

方法

参加医学教育学习分析国际峰会的与会者提出了需要解决的关键问题,以推动该领域的发展。小组成员制定了与数据管理、学习者视角和项目视角相关的问题。三位研究人员对与会者的问题进行了归纳定性内容分析,通过共识对数据进行编码,并将其组织成主题。一位研究人员使用这些主题来制定具有代表性的问题,这些问题由其他研究人员进一步完善。

结果

来自 6 个国家的 67 名参与者提交了 195 个问题。从中,我们确定了 3 个主要主题:实施挑战(与改变当前收集数据和利用学习分析的实践有关);数据(与数据收集、安全、治理、访问和分析有关);以及结果(与使用学习分析评估学习者和教师以及评估课程和系统有关)。我们提出了有代表性的问题及其影响。

结论

我们的分析强调了与医学教育中学习分析的实施、数据管理和结果相关的主题。这些结果可作为指导利益相关者教育、研究和政策制定的框架,明确在医学教育中使用学习分析的益处和挑战。

相似文献

4
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
10
A review of learning analytics opportunities and challenges for K-12 education.K-12教育中学习分析的机遇与挑战综述。
Heliyon. 2024 Feb 9;10(4):e25767. doi: 10.1016/j.heliyon.2024.e25767. eCollection 2024 Feb 29.

引用本文的文献

5
Using Learning Analytics to Evaluate the Clinical Education Podcast Format.利用学习分析评估临床教育播客形式
Med Sci Educ. 2024 Mar 18;34(3):531-536. doi: 10.1007/s40670-024-02011-1. eCollection 2024 Jun.

本文引用的文献

10
Twelve Tips for programmatic assessment.程序化评估的十二条建议。
Med Teach. 2015 Jul;37(7):641-646. doi: 10.3109/0142159X.2014.973388. Epub 2014 Nov 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验