Suppr超能文献

土壤总含水量(IWC)和最小限制水分范围(LLWR):利用植物生长指标和土壤性质进行预测

Integral water capacity (IWC) and least limiting water range (LLWR): prediction using plant growth indices and soil properties.

作者信息

Kazemi Sana, Nasiri Mehdi, Asgari Lajayer Behnam, Hatami Mehrnaz

机构信息

Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.

Department of Soil Science and Engineering, Faculty of Agriculture, Isfahan University of Technology, Isfahan, 5166616471 Iran.

出版信息

3 Biotech. 2020 Jul;10(7):314. doi: 10.1007/s13205-020-02283-5. Epub 2020 Jun 23.

Abstract

Soil water availability is an important field of study in soil water and plant relationship. Least limiting water range (LLWR) and integral water capacity (IWC) are two important concepts which are used for water availability to plant. LLWR is determined from four moisture coefficients ( , , , ) that are the soil water contents 10% air-filled porosity (AFP), at field water capacity (FC), 2 MPa penetration resistance (SR), and permanent wilting point (PWP), respectively. The computation is dependent on critical values, so IWC was introduced to avoid using the critical limits that sharply rises in a cut-off from 0 to 1 at the wet end of water release curve or sharply falls from 1 to 0 at the dry side in the previous concepts of water availability for plant. IWC is the integral of differential water capacity function () in the amplitude of 0 to infinity soil matric potential () multiplied by some weighting functions ( ) each considering the effect of various soil limitations on water availability to plants. Up to now, the effect of different soil attributes and the tillage treatments have been reviewed on LLWR. The effect of soil various physical and chemical limitations such as soil hydraulic conductivity (), aeration, SR, and salinity has been considered on IWC computation. LLWR and especially IWC have been seldom studied using plant real response. Results of few studies about LLWR and IWC using stomatal conductance and canopy temperature showed that their values were considerably different with those computed based on previously introduced critical limits for LLWR and weighting functions for IWC. These differences indicate that the critical limits proposed by da Silva et al. (Soil Sci Soc Am J 58:1775-1781, 1994) and weighting functions by Groenevelt et al. (Aust J Soil Res 39:577-598, 2001) may not be applied indiscriminately for all plants and should to be modified according to plant response. Physiological characteristics like transpiration and photosynthesis rate, chlorophyll index, leaf water potential, and relative water content also could be appropriate indices for monitoring plant water status and computation the real value of LLWR and IWC in the field or greenhouse for various types of plants.

摘要

土壤水分有效性是土壤水分与植物关系研究中的一个重要领域。最小限制水分范围(LLWR)和积分水分容量(IWC)是用于衡量植物可利用水分的两个重要概念。LLWR由四个水分系数( 、 、 、 )确定,它们分别是土壤含水量为10%充气孔隙率(AFP)、田间持水量(FC)、2兆帕抗穿透性(SR)和永久萎蔫点(PWP)时的土壤含水量。该计算依赖于临界值,因此引入IWC以避免在植物水分有效性的先前概念中使用在水分释放曲线湿端从0急剧上升到1或在干端从1急剧下降到0的临界极限。IWC是在0至无穷大土壤基质势( )范围内微分水分容量函数( )的积分,乘以一些加权函数( ),每个加权函数都考虑了各种土壤限制因素对植物水分有效性的影响。到目前为止,已经综述了不同土壤属性和耕作处理对LLWR的影响。在IWC计算中考虑了土壤各种物理和化学限制因素的影响,如土壤水力传导率( )、通气性、SR和盐分。LLWR,尤其是IWC,很少使用植物实际响应进行研究。少数关于LLWR和IWC的研究结果表明,使用气孔导度和冠层温度时,它们的值与基于先前引入的LLWR临界极限和IWC加权函数计算的值有很大差异。这些差异表明,da Silva等人(《土壤科学协会美国杂志》58:1775 - 1781,1994年)提出的临界极限和Groenevelt等人(《澳大利亚土壤研究杂志》39:577 - 598,2001年)提出的加权函数可能不能不加区分地应用于所有植物,而应根据植物响应进行修改。蒸腾速率、光合速率、叶绿素指数、叶水势和相对含水量等生理特征也可能是监测植物水分状况以及计算田间或温室中各种植物LLWR和IWC实际值的合适指标。

相似文献

6
Transpiration Reduction in Maize ( L) in Response to Soil Drying.玉米(L)对土壤干燥的蒸腾作用降低
Front Plant Sci. 2020 Jan 23;10:1695. doi: 10.3389/fpls.2019.01695. eCollection 2019.

本文引用的文献

6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验