Suppr超能文献

使用基于新型边缘强度线索的位置检测方法对外周血图像中的白细胞进行分割。

Leukocyte segmentation in peripheral blood images using a novel edge strength cue-based location detection method.

机构信息

Department of Computer Science and Engineering, College of Engineering, Guindy, Anna University, Chennai, India.

出版信息

Med Biol Eng Comput. 2020 Sep;58(9):1995-2008. doi: 10.1007/s11517-020-02204-x. Epub 2020 Jun 28.

Abstract

The classification of leukocytes in peripheral blood images is an important milestone to be achieved because it can greatly assist pathologists to diagnose diseases such as leukemia, anemia, and other blood disorders. To a certain extent, a good segmentation method for identifying leukocytes from their background is the first step to the efficient functioning of the leukocytes classification system. However, the morphological structure of leukocytes, poor contrast, and the variations in their shape and size lead to the degradation of the segmentation accuracy. In this paper, we propose a new leukocyte segmentation framework that first locates and then segments leukocytes from peripheral blood images. Here, the locations of the leukocytes are first identified using a novel edge strength cue (ESc), and later, the Grabcut model is deployed to obtain the segmentation of the leukocytes. The novelty lies in the way the location of the leukocytes is detected, and this improves the leukocyte segmentation accuracy. The experimental evaluation is performed on ALL-IDB1, Cellavision, and LISC datasets for leukocyte segmentation based on the detection of the ESc location. Experimental results are evaluated using precision, recall, and F-score measures. The proposed method outperforms the state-of-the-art techniques. Additionally, the computation time of the proposed method is analyzed and presented in the study. Graphical Abstract Leukocytes Location Detection and Segmentation.

摘要

外周血图像中的白细胞分类是一个重要的里程碑,因为它可以极大地帮助病理学家诊断白血病、贫血和其他血液疾病。在某种程度上,从背景中识别白细胞的良好分割方法是白细胞分类系统高效运行的第一步。然而,白细胞的形态结构、对比度差以及形状和大小的变化导致分割精度降低。在本文中,我们提出了一种新的白细胞分割框架,该框架首先定位,然后从外周血图像中分割白细胞。在这里,首先使用新的边缘强度线索 (ESc) 来识别白细胞的位置,然后部署 Grabcut 模型来获得白细胞的分割。新颖之处在于检测白细胞位置的方式,这提高了白细胞分割的准确性。基于 ESc 位置检测,在 ALL-IDB1、Cellavision 和 LISC 数据集上进行了用于白细胞分割的实验评估。使用精度、召回率和 F 分数来评估实验结果。所提出的方法优于最先进的技术。此外,还分析并提出了该方法的计算时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验